Advertisement

Numerical Simulation of Super-Detonative Ram Accelerator; Its Shock-Induced Combustion and Oblique Detonation

  • Jeong-Yeol ChoiEmail author
  • In-Seuck Jeung
Chapter
Part of the Shock Wave Science and Technology Reference Library book series (SHOCKWAVES, volume 10)

Abstract

Hypersonic propulsion has been subjected to an intense research for the future propulsion. Various techniques have been proposed to replace the existing techniques. Most of them are chemical propulsion system, in which combustion plays a vital role in heat addition and its conversion to kinetic energy. The Ram Accelerator [1, 2], (referred to as RamAc), a ramjet-in-tube concept, is a propulsion concept based on using the Shock-Induced Combustion (SIC) to accelerate the projectile to a very high velocity. In a Ram accelerator, a projectile travels at supersonic speed in a launch tube, filled with a premixed fuel-oxidizer mixture

Keywords

Detonation Wave Separation Bubble Reaction Front Oblique Shock Normal Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

HR

Heat Release Parameter

ID

Induction Distance

ODW

Oblique Detonation Wave

OSW

Oblique Shock Wave

NDW

Normal Detonation Wave

SCRamAc

Super detonative Combustion Ram Accelerator

SBLI

Shock Boundary Layer Interaction

SCRamAc

Super detonative Combustion Ram Accelerator

SD

Shock Standoff Distance

SIC

Shock-Induced Combustion

TC

Thrust Coefficient

ZND

Zeldovich, von Neumann and Döring Model

Notes

Acknowledgements

Authors appreciate greatly P. Pradeep Kumar for editing the manuscript with great care. Authors also thank to F. Seiler and O. Igra and for suggesting this great opportunity, reading the manuscript and giving corrections.

References

  1. 1.
    Hertzberg, A., Bruckner, A.P., Bogdanoff, D.W.: Ram accelerator: a new chemical method for accelerating projectiles to ultrahigh velocities. AIAA J. 26(2), 195–203 (1988)CrossRefGoogle Scholar
  2. 2.
    Bogdanoff, D.W.: Ram accelerator direct space launch system: new concepts. J. Propul. Power 8(2), 481–490 (1992)CrossRefGoogle Scholar
  3. 3.
    Choi, J.-Y., Jeung, I.-S., Yoon, Y.: Computational fluid dynamics algorithms for unsteady shock-induced combustion, part 1: validation. AIAA J. 38(7), 1179–1187 (2000)CrossRefGoogle Scholar
  4. 4.
    Choi, J.-Y., Jeung, I.-S., Yoon, Y.: Computational fluid dynamics algorithms for unsteady shock-induced combustion, part 2: comparison. AIAA J. 38(7), 1188–1195 (2000)CrossRefGoogle Scholar
  5. 5.
    Choi, J.-Y., Jeung, I.-S., Yoon, Y.: Numerical study of scram accelerator starting characteristics. AIAA J. 36(6), 1029–1038 (1998)CrossRefGoogle Scholar
  6. 6.
    Lehr, H.F.: Experiments on shock-induced combustion. Astronaut. Acta 17(4, 5), 589–597 (1972)Google Scholar
  7. 7.
    Jachimowski, C.J.: An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion. NASA TP-2791 (1988)Google Scholar
  8. 8.
    Yungster, S., Radhakrishnan, K.: A fully implicit time accurate method for hypersonic combustion: application to shock-induced combustion instability. AIAA Pap. 94–2965 (1994)Google Scholar
  9. 9.
    Matsuo, A., Fujiwara, T.: Numerical simulation of shock-induced combustion around an axisymmetric blunt body. In: AIAA Paper 91–1414, AIAA 26th Thermophysics Conference, Honolulu (1991)Google Scholar
  10. 10.
    Wilson, G.J., Sussman, M.A.: Computation of unsteady shock-induced combustion using logarithmic species conservation equations. AIAA J. 31(2), 294–301 (1993)Google Scholar
  11. 11.
    Hosangadi, A., York, B.J., Sinha, N., Dash, S.M.: Progress in transient interia ballistic flowfield simulation using multi-dimensional upwind/implicit numerics. AIAA Pap. 93–1915 (1993)Google Scholar
  12. 12.
    Morris, C.I., Kamel, M.R., Hanson, R.K.: Expansion tube investigation of Ram-accelerator projectile flow fields. AIAA 1996–2680Google Scholar
  13. 13.
    Choi, J.-Y., Jeung, I.-S., Yoon, Y.: Unsteady-state simulation of model Ram accelerator in expansion tube. AIAA J. 37(5), 537–543 (1999)CrossRefGoogle Scholar
  14. 14.
    Choi, J.-Y., Jeung, I.-S., Yoon, Y.: Transient simulation of the superdetonative mode initiation process in SCRam accelerator. In: Proceedings of the Combustion Institute, vol. 26, pp. 2957–2963 (1996)Google Scholar
  15. 15.
    Trimpi, R.L.: A preliminary theoretical study of expansion tube, a new device for producing high-enthalpy short duration hypersonic gas flows. NASA TR-R-133 (1962)Google Scholar
  16. 16.
    Seiler, F., Patz, G., Smeets, G., Srulijes, J.: The rail tube in a Ram acceleration: feasibility study with ISL’s RAMAC 30. In: Second International Workshop on Ram Accelerators, RAMAC II, Seattle, WA, July 1995; also Inst. of Saint-Louis, ISL Rept. PU366/95, St. Louis, France, 1995Google Scholar
  17. 17.
    Choi, J.-Y., Lee, B.J., Jeung, I.-S., Yoon, Y.: Computational investigation of high pressure combustion mechanism in scram accelerator. J. Phys. IV 10(11), 131–142 (2000)Google Scholar
  18. 18.
    Moon, G.-W., Jeung, I.-S., Choi, J.-Y., Seiler, F., Patz, G., Smeets, G., Srulijes, J.: Numerical modelling and simulation of RAMAC 30 experiment carried out at the French-German research institute of Saint—Louis. J. Phys. IV 10, 143–153 (2000)Google Scholar
  19. 19.
    Yungster, S.: Numerical study of shock-wave/boundary-layer interactions in premixed combustible gases. AIAA J. 30(10), 2379–2387 (1992)CrossRefGoogle Scholar
  20. 20.
    Nusca, M.J., Kruczynski, D.L.: Reacting flow simulation for a large-scale Ram accelerator. J. Propul. Power 12(1), 61–69 (1996)CrossRefGoogle Scholar
  21. 21.
    Choi, J.-Y., Jeung, I.-S., Yoon, Y.: Scaling effect of the combustion induced by shock-wave boundary-layer interaction in premixed gas. Proc. Combust. Inst. 27, 2181–2188 (1998)CrossRefGoogle Scholar
  22. 22.
    Choi, J.-Y., Jeung, I.-S., Lee, S.: Dimensional analysis of the effect of flow conditions on shock-induced combustion. Proc. Combust. Inst. 26, 2925–2935 (1996)CrossRefGoogle Scholar
  23. 23.
    Pratt, D.T., Humphrey, J.W., Glenn, D.E.: Morphology of standing oblique detonation waves. J. Propul. Power 7(5), 837–845 (1991)CrossRefGoogle Scholar
  24. 24.
    Shepherd, J.E.: In: Buckmaster, J., Jackson, T.L., Kumar, A. (eds.) Detonation Waves and Propulsion, pp. 373–420. Combustion in High-Speed Flows, Kluwer Academic Pub, Dordrecht (1994)Google Scholar
  25. 25.
    Viguier, C., Gourara, A., Desbordes, D., Deshaies, B.: Three dimensional structure of stabilization of oblique detonation wave in a hypersonic flow. Proc. Combust. Inst. 27, 2207–2214 (1998)CrossRefGoogle Scholar
  26. 26.
    Kaneshige, M.J., Shepherd, J.E.: Oblique detonations stabilized on a hypervelocity projectile. Proc. Combust. Inst. 26, 3015–3022 (1996)CrossRefGoogle Scholar
  27. 27.
    Kasahara, J., Fujiwara, T., Endo, T., Arai, T.: Chapman–Jouguet oblique detonation structure around hypersonic projectiles. AIAA J. 39(8), 1553–1561 (2001)CrossRefGoogle Scholar
  28. 28.
    Morris, C.I., Kamel, M.R., Hanson, R.K.: Shock-induced combustion in high-speed wedge flows. Proc. Combust. Inst. 27, 2157–2164 (1998)CrossRefGoogle Scholar
  29. 29.
    Li, C., Kailasanath, K., Oran, E.S.: Detonation structures behind oblique shocks. Phys. Fluids 6(4), 1600–1611 (1994)CrossRefGoogle Scholar
  30. 30.
    Fusina, G., Sislian, JP., Parent, B.: Formation and stability of near Chapman-Jouguet standing oblique detonation waves. AIAA J. 43(7), 1591–1604 (2005)Google Scholar
  31. 31.
    Choi, J.-Y., Kim, D.-W., Jeung, I.-S., Ma, F., Yang, V.: Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proc. Combust. Inst. 31, 2473–2480 (2007)CrossRefGoogle Scholar
  32. 32.
    Choi, J.-Y., Ma, F., Yang, V.: Some numerical issues on simulation of detonation cell structures. Combust. Explos. Shock Waves 44(5), 560–578 (2008)CrossRefGoogle Scholar
  33. 33.
    Choi, J.-Y., Shin, E.J.-R., Jeung, I.-S.: Unstable combustion induced by oblique shock wave at non-attaching condition of oblique detonation wave., Proc. Combust. Inst. 32, 2387–2396 (2009) (See also, Proc. 22nd Int. Symp. Shock Waves, 1999, pp.333-337 (ISBN 085432-706-1))Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringPusan National UniversityBusanSouth Korea
  2. 2.Department of Aerospace EngineeringSeoul National UniversitySeoulSouth Korea

Personalised recommendations