Advertisement

The Ram Accelerator in Subdetonative Propulsion Mode: Analytical and Numerical Modeling and Simulation

  • Pascal BauerEmail author
  • Tarek Bengherbia
Chapter
Part of the Shock Wave Science and Technology Reference Library book series (SHOCKWAVES, volume 10)

Abstract

The present chapter highlights the different steps which lead to a better understanding of the dynamics of the flow in order to predict the performance of a ram accelerator in the thermally choked propulsive mode which operates in the sub-detonative velocity regime; i.e., below the Chapman-Jouguet (C-J) detonation speed of the propellant. A two-dimensional numerical simulation is described and the CFD results are validated against test data from a representative experiment at the University of Washington 38-mm-bore test facility. The early form of the 1D modeling based on a quasi-steady assumption of the flow and involving compressibility effects as well as a real gas equation of state is then presented. The modeling is further improved by using a real gas equation of state for the reactants to account for the compressibility effects when high initial pressures are involved. In order to further account for high acceleration rates, an unsteady modeling of the flow is then assumed. The effectiveness of an improved 1D unsteady modelling applying the CFD predicted control volume length is further demonstrated. Moreover, based on data derived from different scale facilities; i.e., the University of Washington and the French-German Research Institute (ISL), several equations of state of the combustion products are investigated. A computer code, namely TARAM, has been developed for this purpose.

Keywords

Mach Number Incoming Velocity Detonation Speed High Initial Pressure Mach Number Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ahuja, J.K., Tiwari, S.N.: Effect of various flow and physical parameters on stability of shock-induced combustion. In: AIAA (ed.) Proceedings of the 34th Aerospace Sciences Meeting, Reno, NV, USA, paper 96-0732 (1996)Google Scholar
  2. 2.
    Auzias De Turenne, J., Chew, G., Bruckner, A.P.: Recent results from the University of Washington’s 38 mm ram accelerator. In: AIAA (ed.) Proceedings of the 28th Joint Propulsion Conference, Nashville, TN, USA, paper 92-3782 (1992)Google Scholar
  3. 3.
    Bauer, P., Brochet, C.: Properties of detonation waves in hydrocarbon-oxygen-nitrogen mixtures at high initial pressures. In: AIAA (ed.) Progress in Aeronautics and Astronautics, vol. 87, pp. 231–243. AIAA, New York (1983)Google Scholar
  4. 4.
    Bauer, P., Knowlen, C.: Compressibility effects of unreacted propellant on thermally choked ram accelerator performance. Eur. Phys. J. Appl. Phys. 21, 233–238 (2003)CrossRefGoogle Scholar
  5. 5.
    Bauer, P., Legendre, J.F.: Detonability limits of propellant mixtures used in the ramac. In: Murphy, M.J., Backofen, M.J.E. (eds.) Proceedings of the 14th International Symposium on Ballistics, Québec, Canada, p. 389 (ISBN 0-9618156-9-8) (1993)Google Scholar
  6. 6.
    Bauer, P., Brochet, C., Krishnan, S.: Detonation characteristics of gaseous ethylene, oxygen and nitrogen mixtures at high initial pressures. In: AIAA (ed.) Progress in Aeronautics and Astronautics, vol. 75, pp. 408–422. AIAA, New York (1981)Google Scholar
  7. 7.
    Bauer, P., Presles, H.N., Heuzé, O., Brochet, C.: Equation of state for dense gases. Arch. Combust. 5(1), 315–320 (1985)Google Scholar
  8. 8.
    Bauer, P., Dunand, M., Presles, H.N.: Detonation characteristics of methane oxygen and nitrogen at extremely high initial pressures. In: AIAA (ed.) Progress in Aeronautics and Astronautics, vol. 133, pp. 56–62. AIAA, New York (1991)Google Scholar
  9. 9.
    Bauer, P., Dunand, M., Presles, H.N., Heuzé, O.: Investigation on extremely dense gaseous explosives. In: Proceedings of 17th International Symposium on Pyrotechnics and Explosives, pp. 551–556. China Academic Publishers, Beijing, China, (1991)Google Scholar
  10. 10.
    Bauer, P., Presles, H.N., Heuzé, O., Legendre, J.F.: Prediction of detonation characteristics of dense gaseous explosives on the basis of virial equation of state. In: Proceedings of the 20th International Pyrotechnics Seminar, Colorado Springs, CO, USA (1994)Google Scholar
  11. 11.
    Bauer, P., Legendre, J.F., Knowlen, C., Higgins, A.J.: Detonation of insensitive dense gaseous mixtures in tubes. In: AIAA (ed.) Proceedings of the 32nd Joint Propulsion Conference, Lake Buena Vista, FL, USA, paper 96-2682 (1996)Google Scholar
  12. 12.
    Bauer, P., Knowlen, C., Higgins, A.J., Legendre, J.F.: Detonation initiation of insensitive dense gaseous mixtures by piston impact. In: Houwing, A.F.P. (ed.) Proceedings of the 21st International Symposium on Shock Waves, Great Keppel Island, Australia, p. 1609. University of Queensland (1997)Google Scholar
  13. 13.
    Bauer, P., Knowlen, C., Bruckner, A.P.: Real gas effects on the prediction of ram accelerator performance. Shock Waves 8, 113–118 (1998)CrossRefGoogle Scholar
  14. 14.
    Bauer, P., Legendre, J.F., Knowlen, C., Higgins, A.J.: A review of detonation initiation techniques for insensitive dense methane-oxygen-nitrogen mixtures. Eur. Phys. J. Appl. Phys. 2, 183 (1998)CrossRefGoogle Scholar
  15. 15.
    Bauer, P., Knowlen, C., Bruckner, A.P., Henner, M.: Determination of choke pressure of ram accelerator in sub-detonative mode. J. Phys. 10, 59–67 (2000)Google Scholar
  16. 16.
    Bauer, P., Henner, M., Giraud, M.: Numerical investigation of the fin geometry of ram accelerator projectiles in subdetonative propulsion mode. Eur. Phys. J. Appl. Phys. 23, 136–145 (2003)CrossRefGoogle Scholar
  17. 17.
    Bauer, P., Knowlen, C., Bruckner, A.P.: Modeling acceleration effects on ram accelerator thrust at high pressures. AIAA J. Propul. Power 21, 955–995 (2005)CrossRefGoogle Scholar
  18. 18.
    Bender, R., Menter, F.R.: Coupling of large Eddy simulation with Eddy dissipation model. The 5th Framework Programme, Progress Report, ANSYS-CFX Ltd (1998–2002) Google Scholar
  19. 19.
    Bengherbia, T.: Contribution to numerical simulation analysis of the flow in the ram accelerator in the sub-detonative propulsion mode. Ph.D. Dissertation, Laboratoire de Combustion et de Détonique (LCD), CNRS, ENSMA, Poitiers, France (2009)Google Scholar
  20. 20.
    Bengherbia, T., Yao, Y.F., Bauer, P.: Computational Investigation of Transitional Viscous Flow over a Ram Accelerator Projectile in Sub-detonative Propulsion Mode. AIAA 2006-0558 (2006)Google Scholar
  21. 21.
    Bengherbia, T., Yao, Y.F., Bauer, P., Knowlen, C.: Numerical Investigation of Thermally Choked Ram Accelerator in Sub-detonative Regime. AIAA 2009-0635 (2009)Google Scholar
  22. 22.
    Bengherbia, T., Yao, Y., Bauer, P., Knowlen, C.: One-dimensional performance modeling of the RAMAC in subdetonative regime. Aerotecnica J. Aerospace Sci. Tech. Syst. 89, 3–13 (2010)Google Scholar
  23. 23.
    Bengherbia, T., Yao, Y., Bauer, P., Giraud, M., Knowlen, C.: Improved 1D unsteady modeling of the thermally choked RAMAC in the sub-detonative propulsion mode. J. Appl. Mech. 78, 150–167 (2011)CrossRefGoogle Scholar
  24. 24.
    Bengherbia, T., Yao, Y., Bauer, P., Knowlen, C.: CFD-based 1D modeling of the thermally choked ram accelerator. In: Proceedings of the 50th AIAA Aerospace Sciences Meeting and Exhibit, Nashville, TN, AIAA 2012-982 (2012)Google Scholar
  25. 25.
    Brouillette, M., Frost, D.L., Zhang, F., Chue, R.S., Lee, J.H.S., Thibault, P., Yee, C.: Limitations of the ram accelerator. In: Brun, R., Dumitrescu, L.Z.: Shock Waves at Marseille Vol. 1: Hypersonics, Shock Tube and Shock Tunnel Flow, pp. 171–176. Springer, Berlin (1995)Google Scholar
  26. 26.
    Bruckner, A.P., Burnham, E.A., Knowlen, C., Hertzberg, A., Bogdanoff, D.W.: Initiation of combustion in the thermally choked ram accelerator. In: Takayama, K. (ed.) Shock Waves Proceedings, Sendai, Japan, vol. II. Springer, Heidelberg (1991)Google Scholar
  27. 27.
    Bruckner, A.P., Knowlen, C., Hertzberg, A., Bogdanoff, D.W.: operational characteristics of the thermally choked ram accelerator. J. Propul. Power 7(5), 828–836 (1991)CrossRefGoogle Scholar
  28. 28.
    Bruckner, A.P., Hinkey, J.B., Burnham, E.A., Knowlen, C.: Investigation of 3-D reacting flow phenomena in a 38 mm ram accelerator. In: Giraud, M., Smeets, G. (eds.) Proceedings of the 1st International Workshop on Ram Accelerators, Seattle, Saint-Louis, France (1993)Google Scholar
  29. 29.
    Bundy, C., Knowlen, C., Bruckner, A.P.: Ram Accelerator Operating Characteristics at Fill Pressures Greater than 10 MPa. AIAA Paper 99-2261 (1999)Google Scholar
  30. 30.
    Bundy, C., Knowlen, C., Bruckner, A.P.: Investigation of Ram Accelerator Operation at Fill Pressures up to 20 MPa. AIAA Paper 2000-3231 (2000)Google Scholar
  31. 31.
    Bundy, C., Knowlen, C., Bruckner, A.P.: Unsteady effects on ram accelerator operation at elevated fill pressures. J. Propul. Power 20, 801–810 (2004)CrossRefGoogle Scholar
  32. 32.
    Buckwalter, D.L., Knowlen, C., Bruckner, A.P.: Ram Accelerator Performance Code Incorporating Real Gas Effects. AIAA paper 96-2945 (1996)Google Scholar
  33. 33.
    Buckwalter, D.L., Knowlen, C., Bruckner, A.P.: Real Gas Effects on Ram Accelerator Analysis. AIAA paper 97-2894 (1997)Google Scholar
  34. 34.
    Byers Brown, W., Amaee, A.: Review of equations of state of fluids valid to high densities. Report # 39/1992. Dept of Chemistry, University of Manchester, U.K. (1992)Google Scholar
  35. 35.
    Chiping, L., Kailasanath, K., Oran, E.S., Landsberg, A.M., Boris, J.P.: Dynamics of oblique detonations in ram accelerators. Shock Waves 5, 97 (1995)Google Scholar
  36. 36.
    Dabora, E.K., Desbordes, D., Guerraud, C., Wagner, H.G.: Oblique detonation at hypersonic velocities. Progress Astronaut. Aeronaut. AIAA J. 133, 187 (1991)Google Scholar
  37. 37.
    Desbordes, D., Hamada, L., Guerraud, C.: Supersonic H2-air combustion behind oblique shock waves. Shock Waves 4, 339 (1995)CrossRefGoogle Scholar
  38. 38.
    Giraud, M., Simon, G.: Sabot for Projectiles of Ram Accelerators and Projectiles Equipped with such a Sabot. United States Patent No 5, 394, 805Google Scholar
  39. 39.
    Giraud, M., Legendre, J.F., Simon, G., Catoire, L.: Ram accelerator in 90 mm caliber. First results concerning the scale effect in the thermally choked propulsion mode. In: Proceedings of the 13th International Symposium on Ballistics, Stockholm, Sweden (1992)Google Scholar
  40. 40.
    Giraud, M., Legendre, J.F., Simon, G.: RAMAC 90: experimental studies and results in 90 mm caliber, length 108 caliber. In: Giraud, M., Smeets, G. (eds.) Proceedings of the 1st International Workshop on Ram Accelerators, Saint-Louis, France (1993)Google Scholar
  41. 41.
    Giraud, M., Legendre, J.F., Simon, G., Henner, M., Voisin, D.: RAMAC in 90 mm caliber or RAMAC 90. Starting process, control of the ignition location and performances in the thermally choked propulsion mode. In: Bruckner, A.P., Knowlen, C. (eds.) Proceedings of the 2nd International Workshop on Ram Accelerators, Seattle, WA, USA. University of Washington (1995)Google Scholar
  42. 42.
    Giraud, M., Legendre, J.F., Henner, M.: RAMAC in subdetonative propulsion mode: state of ISL studies. In: Takayama, K., Sasoh, A. (eds.) Ram Accelerators. Springer, Berlin (1997)Google Scholar
  43. 43.
    Giraud, M., Legendre, J.F., Henner, M.: RAMAC in subdetonative propulsion mode: state of the ISL studies. In: Takayama, K., Sasoh, A. (eds.) Ram Accelerators, pp. 65–78. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  44. 44.
    Henner, M., Giraud, M., Legendre, J.F., Berner, C.: Initiation of reactive mixtures in a ram accelerator. In: AIAA (ed.) Proceedings of the 33rd Joint Propulsion Conference, July 7–9, Seattle, WA, USA, pp. 97–3173 (1997)Google Scholar
  45. 45.
    Henner, M., Giraud, M., Legendre, J.F., Berner, C.: CFD computations of steady and non-reactive flow around fin-guided ram projectiles. In: Takayama, K., Sasoh, A. (eds.) Ram Accelerators. Springer, Berlin (1997)Google Scholar
  46. 46.
    Hertzberg, A., Bruckner, A.P., Bogdanoff, D.W.: Ram accelerator: a new chemical method for accelerating projectiles to ultrahigh velocities. AIAA J. 26(2), 195–203 (1988)CrossRefGoogle Scholar
  47. 47.
    Hertzberg, A., Bruckner, A.P., Knowlen, C.: Experimental investigation of ram accelerator propulsion modes. Shock Waves 1(1), 17–25 (1991)CrossRefGoogle Scholar
  48. 48.
    Heuzé, O.: Equations of state of detonation products. Phys. Rev. A 34, 428–432 (1986)CrossRefGoogle Scholar
  49. 49.
    Heuzé, O., Bauer, P., Presles, H.N., Brochet, C.: Equations of state for detonation products and their incorporation into the QUATUOR Code. In: Proceedings of the 8th Symposium (Int.) on Detonation, pp. 762–769 (1986)Google Scholar
  50. 50.
    Heuzé, O., Presles, H.N., Bauer, P.: Computation of chemical equilibrium. J. Chem Phys. 38, 4734–4737 (1987)Google Scholar
  51. 51.
    Heuzé, O., Bauer, P., Presles, H.N.: Compressibility and thermal properties of gaseous mixtures at a high temperature and high pressure. High Temperatures, High Pressures, no 19, pp. 611–620 (1987)Google Scholar
  52. 52.
    Heuzé, O., Bauer, P., Presles, H.N.: QUATUOR: A Code for Computing Thermodynamic Properties of Detonation and Combustion Products, Seriep Ed., Paris, pp. 91–96 (1987)Google Scholar
  53. 53.
    Higgins, A.J.: Detonation initiation by supersonic blunt bodies. Ph.D. Dissertation, University of Washington, Seattle, WA, USA (1996)Google Scholar
  54. 54.
    Kemp, M.K., Thompson, R.E., Zigrang, D.J.: Equations of state with two constants. J. Chem. Educ. 49, 802–803 (1975)CrossRefGoogle Scholar
  55. 55.
    Kovacik, G.J., Knill, K.J. (1994) Numerical simulation of coal gasification reactors. In: International Joint Power Generation Conference and Exposition, Phoenix, USA (1994)Google Scholar
  56. 56.
    Knowlen, C.: Theoretical and experimental investigation of the thermodynamics of the thermally choked ram accelerator. Ph.D. Dissertation, University of Washington, Seattle, WA, USA (1991)Google Scholar
  57. 57.
    Knowlen, C., Bruckner, A.P.: A Hugoniot analysis of the ram accelerator. In: Takayama, K. (ed.) Shock Waves Proceedings, Sendai, Japan, vol. I. Springer, Heidelberg (1991)Google Scholar
  58. 58.
    Knowlen, C., Bruckner, A.P.: Direct Launch Using Ram Accelerator Technology, Space Technology an Applications. In: El-Genk, M.S. (ed.) Int. Forum, pp. 583–588. American Institute of Physics (2001)Google Scholar
  59. 59.
    Knowlen, C., Higgins, A.J., Bruckner, A.P., Bauer, P.: Ram Accelerator Operation in the Superdetonative Velocity Regime. AIAA paper 96-0098 (1996)Google Scholar
  60. 60.
    Kruczynski, D.L.: New experiments in a 120-mm ram accelerator at high pressures. In: 29th AIAA, SAE, ASME, and ASEE Joint Propulsion Conference and Exhibit, Monterey, CA (1993)Google Scholar
  61. 61.
    Kruczynski, D.: Experiments in a 120-mm ram accelerator. In: Murphy, M.J., Backofen, M.J.E. (eds.) Proceedings of the 14th International Symposium on Ballistics, Québec, Canada (ISBN 0-9618156-9-8), p. 173 (1993)Google Scholar
  62. 62.
    Lefebvre, M.H.: Modeling of unstarts in ram accelerator. In: Bruckner, A.P., Knowlen, C. (eds.) Proceedings of the 2nd International Workshop on Ram Accelerators, Seattle, WA, USA. University of Washington (1995)Google Scholar
  63. 63.
    Legendre, J.F., Giraud, M., Bauer, P., Voisin, D.: 90L35 detonation tube experiments: influence of diluent nature on the detonation characteristics of dense methane-based gaseous explosives. In: Bruckner, A.P., Knowlen, C. (eds.) Proceedings of the 2nd International Workshop on Ram Accelerators, Seattle, WA, USA. University of Washington (1995)Google Scholar
  64. 64.
    Legendre, J.F., Bauer, P., Giraud, M.: RAMAC 90: detonation initiation of insensitive dense methane-based mixtures by normal shock waves. In: Takayama, K., Sasoh, A. (eds.) Ram Accelerators. Springer, Berlin (1997)Google Scholar
  65. 65.
    Lehr, H.F.: Experiments on shock-induced combustion. Astronaut. Acta 17, 589 (1972)Google Scholar
  66. 66.
    Mader, C.L.: Detonation Properties of Condensed Explosives Computed Using the Becker–Kistiakowsky–Wilson Equation of State. Report-LA-2900. Los Alamos Scientific Laboratory, NM, USA (1963)Google Scholar
  67. 67.
    Menter, F.R.: Zonal two Equation k-ω Turbulence Models for Aerodynamic Flows. AIAA paper 93-2906 (1993)Google Scholar
  68. 68.
    Magnussen, B.R.F.: On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. In: 19th Aerospace Sciences Meeting, St. Louis, Mo., 1981, AIAA paper 1981-42 (1981)Google Scholar
  69. 69.
    Magnussen, B.F, Hjertager, B.H.: Eddy dissipation in turbulent reacting flows. In: 16th International Symposium on Combustion, p. 719. The Combustion Institute, Pittsburgh, Pennsylvania (1977)Google Scholar
  70. 70.
    Mitchell, R.E., Kee, R.J.: A General-Purpose Computer Code for Predicting Chemical Kinetic Behavior Behind Incident and Reflected shocks. Report SAND82-8205 (1992)Google Scholar
  71. 71.
    Morris, R.W., Turek, E.A.: Optimal temperature-dependence parameters for the Redlich-Kwong equation of state. In: Chao, R. (ed.) Equations of State, pp. 389–397. Am. Chem. Soc., Washington, DCGoogle Scholar
  72. 72.
    Nusca, M.J.: Numerical simulation of reacting flow in a thermally choked ram accelerator projectile launch system. In: AIAA (ed.) Proceedings of the 27th Joint Propulsion Conference, Sacramento, CA, USA, pp. 91–1915 (1991)Google Scholar
  73. 73.
    Nusca, M.J.: Reacting flow simulation of transient, multi-stage ram accelerator operation and design studies. In: Bruckner, A.P., Knowlen, C. (eds.) Proceedings of the 2nd International Workshop on Ram Accelerators, Seattle, WA, USA. University of Washington (1995)Google Scholar
  74. 74.
    Nusca, M.J., Kruczynski, D.L.: Reacting flow simulation for large-scale RAMAC. J. Propul. Power 12(1), 61–69 (1991)Google Scholar
  75. 75.
    Patz, G., Seiler, F., Smeets, G., Srulijes, J.: Status of ISL’s RAMAC 30 with Fin guided projectiles accelerated in a smooth bore. In: Bruckner, A.P., Knowlen, C. (eds.) Proceedings of the 2nd International Workshop on Ram Accelerators, Seattle, WA, USA. University of Washington (1995)Google Scholar
  76. 76.
    Petersen, E.L., Davidson, D.F., Hanson, R.K.: Ignition delay times of ram accelerator mixtures. In: AIAA (ed.) Proceedings of the 32nd Joint Propulsion Conference, Lake Buena Vista, FL, USA, pp. 96–2681 (1996)Google Scholar
  77. 77.
    Schultz, E., Knowlen, C., Bruckner, A.P.: Obturator and detonation experiments in the subdetonative ram accelerator. Shock Waves 9, 181 (1999)CrossRefGoogle Scholar
  78. 78.
    Schultz, E., Knowlen, C., Bruckner, A.P.: Starting envelope of the subdetonative ram accelerator. J. Propul. Power 16(6), 1040–1052 (2000)CrossRefGoogle Scholar
  79. 79.
    Smith, G., Golden, D., Frenklach, M., Moriarty, N., Eiteneer, B., Goldenberg, M., Bowman, T., Hanson, R., Song, S., Gardiner, W., Lissianski, V., Qin, Z.: GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech (2000)
  80. 80.
    Stewart, J.F., Bruckner, A.P., Knowlen, C.: Effects of launch tube shock dynamics on initiation of ram accelerator operation. In: Takayama, K., Sasoh, A. (eds.) Ram Accelerators. Springer, Berlin (1997)Google Scholar
  81. 81.
    Stewart, J.F., Knowlen, C., Bruckner, A.P.: Effects of launch tube gases on starting of the ram accelerator. In: AIAA (ed.) Proceedings of the 33rd Joint Propulsion Conference, Seattle, WA, USA, pp. 97–2652 (1997)Google Scholar
  82. 82.
    Viguier, C., Guerraud, C., Desbordes, D.: H2-air and CH4-air detonations and combustion behind oblique shock waves. In: Proceedings of the 25th Symposium (Int.) on Combustion, p. 53. The Combustion Institute Ed. (1994)Google Scholar
  83. 83.
    Weirs, V.G., Candler, G.V.: Simulation of ram accelerator flowfields using elemental conservation equations. In: Proceedings of the 30th Joint Propulsion Conference, Indianapolis, IN, USA, AIAA paper 94-2966 (1994)Google Scholar
  84. 84.
    Yungster, S., Rabinowitz, M.J.: Numerical study of shock induced combustion using a detailed methane-air mechanism. J. Prop. Power 10, 609 (1994)CrossRefGoogle Scholar
  85. 85.
    Yungster, S., Eberhardt, S., Bruckner, A.P.: Numerical simulation of hypervelocity projectiles in detonable gases. AIAA J. 29, 238 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.PPRIME (ex LCD), UPR CNRS # 3346, ISAé-ENSMAPoitiersFrance
  2. 2.Det Norske VeritasLondonUK

Personalised recommendations