Advertisement

RAMAC in Subdetonative Propulsion Mode with Fin-Guided Projectile: Design, Modeling, Performance and Scale Effect

  • Marc Giraud
  • Pascal BauerEmail author
Chapter
Part of the Shock Wave Science and Technology Reference Library book series (SHOCKWAVES, volume 10)

Abstract

The aim of this chapter is to demonstrate the basic feasibility of the RAMAC and its higher ability to accelerate a projectile than any conventional gun. This capability comes from the constant high pressure thrust at the rear of the projectile, contrary to the pressure distribution in a conventional powder gun barrel. Yet, a better knowledge of the gas dynamics of the flow was expected in order to improve the ram accelerator operations. The present study refers to ram accelerator operations in the thermally choked propulsive mode which operates in the sub-detonative velocity regime; i.e., below the Chapman-Jouguet (C-J) detonation speed of the propellant. A numerical simulation of the flow characteristics around the projectile with and without fins is presented in order to show the influence of the geometry of the fins on the RAMAC performance. This series of calculations were conducted using the 3D numerical code TascFlow TM. Different types of fins, i.e., various shapes and number, were studied. The characteristics of the flow in terms of temperature, pressure and Mach number distributions were studied. The data show a drastic role of the fin geometry on the maximum temperature of the flow. The nature of the reactive mixture, which is a key parameter for the performance of the ram accelerator, was investigated as well, mainly in terms of detonability. For this purpose, an important basic research has been conducted in 90 mm tubes in order to yield the best composition of the reactants for a Sub-detonative propulsion mode. This studies included detonations experiments conducted in a 1.35 m long tube and a 3.15 m long tube. The other important aspect, which is addressed in this chapter, is the discussion on the scale effect, which provides some information on the feasibility of this novel technology for future space applications. All these data have become now part of the databank for the development of this technology throughout the world.

Keywords

Mach Number Mach Number Distribution Basic Feasibility Overdrive Detonation Similar Initial Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hertzberg, A., Bruckner, AP., Bogdanoff, D.W.: A new chemical method of achieving ultrahigh velocities. In: Proceedings of 37th Meeting of the Aeroballistic Range Association (ARA), Québec, Canada (1986)Google Scholar
  2. 2.
    Sasoh, A., Hirakata, S., Maemura, J., Hamate, Y., Takayama, K.: Thermally choked operation in a 25-mm-bore ram accelerator. In: Takayama, K., Sasoh, A. (eds.) Proceedings of 3rd International RAMAC Workshop, pp. 111–118. Sendai SWRC-Japan (1997)Google Scholar
  3. 3.
    Bruckner, A.P., Bodganoff, D.W., Knowlen, C., Hertzberg, A.: Investigation of gasdynamic phenomena associated with the Ram accelerator concept, AIAA paper 87-1327 (1987)Google Scholar
  4. 4.
    Bruckner, A.P., Hertzberg, A., Kull, AE., Burnham, E.A., Knowlen, C., Yungster, S.: High velocity modes of the Ram accelerator. In: Proceedings of 40 Meeting of the Aeroballistic Range Association (ARA), Paris, France (1989)Google Scholar
  5. 5.
    Bruckner, A.P., Knowlen, C., Hertzberg, A., Bogdanoff, D.W.: Operational characteristics of the thermally choked ram accelerator. J. Prop Power 7, 828–836 (1991)CrossRefGoogle Scholar
  6. 6.
    Bruckner, A.P., Burnham, E.A., Knowlen, C., Hertzberg, A., Bogdanoff, D.W.: Initiation of combustion in the thermally choked Ram accelerator. In: Takayama, K (ed.), Ed Shock Waves, Springer, Heidelberg, pp. 623–630 (1992)Google Scholar
  7. 7.
    Bruckner, A.P.: The Ram accelerator, a technology overview. AIAA Survey paper, 2002-1014Google Scholar
  8. 8.
    Bruckner, A.P., Hinkey, J.B., Burnham, E.A., Knowlen, C.: Investigation of 3-D reacting Flow phenomena in a 38 mm Ram accelerator. In: Giraud, M., Smeets, G. (eds.) Proceedings of the 1st International Workshop on Ram Accelerators, Saint-Louis, France (1993)Google Scholar
  9. 9.
    Giraud, M., Legendre, JF., Simon, G.: RAM accelerator in 90 mm Caliber or RAMAC 90. Experimental results concerning the trans-detonative combustion mode. In: Proceedings of 14th International Symposium on Ballistics, Québec, Canada (1993)Google Scholar
  10. 10.
    Giraud, M., Legendre, JF., Simon, G.: RAMAC 90, experimental studies and results in 90 mm caliber, length 108 calibers. In: Giraud, M., Smeets, G. (eds.) Proceedings of the 1st International Workshop on Ram Accelerator, Saint-Louis, France (1993)Google Scholar
  11. 11.
    Giraud, M., Legendre, JF., Simon, G., Henner, M., Voisin, D.: RAMAC in 90 mm caliber or RAMAC 90. Starting process, control of the ignition location and performances in the thermally choked propulsion mode. In: Bruckner, A.P., Knowlen, C. (eds.) Proceedings of the 1st International Workshop on Ram Accelerators, Seattle, WA, USA (1995)Google Scholar
  12. 12.
    Giraud, M., Legendre, JF., Henner, M.: RAMAC in sub-detonative propulsion mode. State of ISL studies. In: Takayama, K., Sasoh, A. (eds.) Proceedings of the 3rd International Workshop on Ram Accelerators, pp. 65–78. Sendai, Japan, SWRC (1997)Google Scholar
  13. 13.
    Giraud, M., Legendre, J.F., Henner, M.: RAMAC in sub-detonative propulsion mode. In: Proceedings of 17th International Symposium on Ballistics, Midrand, South Africa (1998)Google Scholar
  14. 14.
    Giraud, M., Bruckner, A.P., Takayama, K., Bauer, P., Knowlen, C., Hamate, Y.: What about the Ram accelerator? History, principles, performances and applications. In: Proceedings of 55th ARA meeting in Freiburg, FRG (2004)Google Scholar
  15. 15.
    Henner, M.: Contribution à l’étude des Effets d’Echelle dans les Accélérateurs à Effet Stato en Mode de Combustion Sous-détonatif. Ph.D Dissertation, University of Poitiers, France (1998)Google Scholar
  16. 16.
    Hertzberg, A., Bruckner, A.P., Bogdanoff, D.W.: Ram accelerator, a new chemical method for accelerating projectiles to ultrahigh velocities. AIAA J 26, 195–203 (1988)CrossRefGoogle Scholar
  17. 17.
    Kruczynski, D.: Experiments in a 120-mm Ram accelerator. In: Murphy, M.J., Backofen, M.J.E. (eds.) Proceedings of the 14th International Symposium on Ballistics, Québec, Canada, p. 173 (1993). ISBN 0-9618156-9-8Google Scholar
  18. 18.
    Bauer, P., Henner, M., Legendre, J.F., Giraud, M.: Diameter effect in the initiation process of combustion in a ram accelerator in sub-detonative mode. Eur. Phys. J. Appl. Phys. 19, 185–194 (2002)CrossRefGoogle Scholar
  19. 19.
    Catoire, L., Dupre, G., Paillard, C., Giraud, M., Lecouvreur, P.: Study of the explosion hazard in the unburnt gas of the RAMAC 90. In: Giraud, M., Smeets, G. (eds.) Proceedings of 1st International RAMAC Workshop, on RAM Accelerators, Saint-Louis, France (1993)Google Scholar
  20. 20.
    Giraud, M., Legendre, J.F., Simon, G.: RAM accelerator at ISL. First experiments in 90 mm caliber. In: 42nd ARA meeting, Adelaide, Australia (1991)Google Scholar
  21. 21.
    Giraud, M., Legendre, J.F., Simon, G.: Ram accelerator studies in 90 mm caliber. In: 43rd ARA Meeting, Colombus OH, USA (1992)Google Scholar
  22. 22.
    Giraud, M., Legendre, J.F., Simon, G., Mangold, J.P., Simon, H.: RAMAC 90, facility and diagnostic methods. In: 44th ARA Meeting, Munich, FRG (1993)Google Scholar
  23. 23.
    Giraud, M., Catoire, L.: Secondary effects in a RAMAC firing. In: Proceedings of 1st International Meeting on Properties of Reactive Fluids and their Application to Propulsion, University of Poitiers, France (1993)Google Scholar
  24. 24.
    Giraud, M,: RAMAC, 1st Results concerning the Scale Effect in the Thermally Choked Propulsion Mode. In: Proceedings of 1st International Meeting on Properties of Reactive Fluids, University of Poitiers, France (1993)Google Scholar
  25. 25.
    Giraud, M., Simon, H.: Sabot for projectiles of Ram accelerators and projectiles equipped with such a sabot. US Patent Number 5, 394, 805 (1993)Google Scholar
  26. 26.
    Henner, M., Bauer, P., Legendre, J.F., Giraud, M.: Thrust prediction of a RAM accelerator projectile in the sub-detonative propulsion mode. In: Proceedings AIAA Joint Propulsion Conference, Cleveland, USA (1998)Google Scholar
  27. 27.
    Higgins, A.J., Knowlen, C., Bruckner, A.P.: Ram accelerator operating limits, identification of limits and nature of observed Limits. J Prop and Power, 1st part 14, pp. 951–958 and 2nd part 14, pp. 959–966 (1998)Google Scholar
  28. 28.
    Knowlen, C., Burnham, E.A., Kull, AE., Bruckner, A.P., Hertzberg, A.: Ram accelerator operation in the trans-detonative velocity regime. In: 41th Meeting of the Aeroballistic Range Association (ARA), San Diego, California, USA (1990)Google Scholar
  29. 29.
    Knowlen, C., Bruckner, A.P., Hertzberg, A.: Internal ballistics of the Ram accelerator. In: Proceedings of 13th International Symposium on Ballistics, Stockholm, Sweden (1992)Google Scholar
  30. 30.
    Knowlen, C., Higgins, A.J., Hinkey, JB., Burnham, E.A., Mattick, AT.: Diagnostic techniques for Ram accelerator phenomena. In: Proceedings of 43rd Meeting of the Aeroballistic Range Association (ARA), Colombus, Ohio, USA (1992)Google Scholar
  31. 31.
    Knowlen, C., Higgins, A.J., Bruckner, A.P., Bauer, P.: Ram accelerator operation in the super-detonative velocity regime. AIAA Paper 96-0098 (1996)Google Scholar
  32. 32.
    Knowlen, C., Bundy, C., Schwab, R., Bruckner, A.P.: University of Washington, high pressure Ram accelerator facility. In: 50th meeting of the Aeroballistic Range Association (ARA), Pleasanton, California, USA, 1999Google Scholar
  33. 33.
    Giraud, M.: Sabot et interface de projectile pour RAMAC. Brevet N°9211033, ISL N°F II 3/138 (1992)Google Scholar
  34. 34.
    Seiler, F., Lehr, H., Giraud, M.: Projectile conçu pour être lancé à partir d’un accélérateur à effet stato et accélérateur à effet stato mis au point à cette fin. Brevet N°P4120067,5 (RFA), (1991), et brevet N°9207356 (F), (1992), ISL F II 3/124Google Scholar
  35. 35.
    Bauer, P., Henner, M., Giraud, M.: Numerical investigation of the fin geometry of Ram accelerator projectiles in sub-detonative propulsion mode. Eur. Phys. J. App. Phys. 23, 139–145 (2003)CrossRefGoogle Scholar
  36. 36.
    Henner, M., Giraud, M.: Steady and non reactive flow around fin-guided RAM projectiles. Experiments and CFD computations. In: 48th ARA meeting, Austin TX, USA (1997)Google Scholar
  37. 37.
    Legendre, J.F., Giraud, M.: Enhanced RAMAC performances in sub-detonative propulsion mode with semi-combustible projectiles. In: Bauer, P. (ed.) Proceedings of the 4th International Workshop on Ram Accelerators, Poitiers, LCD, France. Journal de Physique, Vol. 10, Pr 11, ISSN 1155–4339, EDP Sciences Edition (2000)Google Scholar
  38. 38.
    Henner, M., Giraud, M., Legendre, J.F., Berner, C.: CFD computations of steady and non reactive flow around fin-guided RAM projectiles. In: Takayama, K., Sasoh, A. (eds.) Proceedings of the 3rd International Workshop on Ram Accelerator, Sendai, Japan, SWRC, pp. 325–332 (1997)Google Scholar
  39. 39.
    Bauer, P., Knowlen, C., Bruckner, A.P., Henner, M.: Determination of choke pressure of ram accelerator in sub-detonative mode. J. Phys. 10, 59–67 (2000)Google Scholar
  40. 40.
    Bogdanoff, D.W.: Strategies to protect Ram accelerator projectiles from in-tube gasdynamic heating. In: Bauer, P. (ed.) Proceedings of the 4th International Workshop on Ram Accelerators, Poitiers, LCD, France. Journal de Physique, Vol. 10, Pr 11, ISSN 1155–4339, EDP Sciences Edition (2000)Google Scholar
  41. 41.
    Veyssière, B., Ingignoli, W., Khasainov, B.A.: On the possibility to modify the performance of propellant mixtures used in RAMAC by addition of metallic particles. In: Bauer, P. (ed.) Proceedings of the 4th International Workshop on Ram Accelerators, Poitiers, LCD, France. Journal de Physique, Vol. 10, Pr 11, ISSN 1155–4339, EDP Sciences Edition (2000)Google Scholar
  42. 42.
    Legendre, J.F.: Contribution à l’Etude de la Sensibilité et des Caractéristiques de Détonation de Mélanges Explosifs Gazeux Denses à Base de Méthane Utilisés pour la Propulsion dans les Accélérateurs à Effet Stato, Ph.D. Dissertation, University of Poitiers, France (1996)Google Scholar
  43. 43.
    Bauer, P., Giraud, M., Legendre, J.F., Catoire, L.: Detonability limits of methane-oxygen-nitrogen mixtures at elevated initial pressures. In: Proceedings of 18th International Pyrotechnics Seminar, Breckenridge, Colorado, USA (1992)Google Scholar
  44. 44.
    Bauer, P., Legendre, J.F.: Detonability limits of propellant mixtures used in the RAMAC. In: Murphy, M.J., Backofen, M.J.E. (eds.) Proceedings of the 14th International Symposium on Ballistics, Québec, Canada, p. 389 (1993). ISBN 0-9618156-9-8Google Scholar
  45. 45.
    Bauer, P., Legendre, J.F., Henner, M., Giraud, M.: Real gas effects in Ram accelerator propellant mixtures, theoretical concepts and applied thermochemical codes. In: Takayama, K., Sasoh, A. (eds.) Proceedings of 3rd International RAMAC Workshop, pp. 39–52. Sendai SWRC-Japan (1997)Google Scholar
  46. 46.
    Bauer, P., Knowlen, C., Higgins, A.J., Legendre, J.F.: Detonation initiation of insensitive dense gaseous mixtures by piston impact. In: Houwing, A.F.P. (ed) Proceedings of the 21st International Symposium on Shock Waves, Great Keppel Island, Australia, University of Queensland, p. 1609 (1997)Google Scholar
  47. 47.
    Bauer, P., Knowlen, C., Bruckner, A.P.: Real gas effects on the prediction of ram accelerator performance. Shock Waves 8, 113–1118 (1998)CrossRefGoogle Scholar
  48. 48.
    Bauer, P., Knowlen, C., Bruckner, A.P., Henner, M., Legendre, J.F., Giraud, M.: Determination of the choke pressure of a Ram accelerator. Projectile in sub-detonative regime. In: Bauer, P. (ed.) Proceedings of the 4th International Workshop on Ram Accelerators, Poitiers, LCD, France. Journal de Physique, Vol. 10, Pr 11, ISSN 1155–4339, EDP Sciences Edition (2000)Google Scholar
  49. 49.
    Henner, M., Legendre, J.F., Giraud, M., Bauer, P.: Initiation of reactive mixtures in a Ram accelerator. In: AIAA (ed.) Proceedings of the 33rd AIAA/ASME/ASEE Joint Propulsion Conference, p. 97, July 7–9 1997, Seattle, WA, USA (1997)Google Scholar
  50. 50.
    Leblanc, J.E., Nusca, M., Wang, X., Seiler, F., Sugihara, M., Fujiwara, T.: Numerical simulation of the RAMAC benchmark test. In: Bauer, P. (ed.) Proceedings of the 4th International Workshop on Ram Accelerators, Poitiers, LCD, France. Journal de Physique, Vol. 10, Pr 11, ISSN 1155–4339, EDP Sciences Edition (2000)Google Scholar
  51. 51.
    Legendre, J.F., Giraud, M., Bauer, P.: Effect of additives on the detonation properties of dense gazeous explosives. In: Giraud, M., Smeets, G. (eds.) Proceedings of the 1st International Workshop on Ram Accelerators, Saint-Louis, France (1993)Google Scholar
  52. 52.
    Legendre, J.F., Giraud, M., Bauer, P., Voisin, D.: 90L35 detonation tube experiments, influence of diluent nature on the detonation characteristics of dense methane based gaseous explosive mixtures. In: , edited by Bruckner, A.P., Knowlen, C. (eds.) Proceedings of the 2nd International Workshop on Ram Accelerators, Seattle, WA, USA (1995)Google Scholar
  53. 53.
    Legendre, J.F., Bauer, P., Giraud, M.: Influence of initiation modes on the detonability of dense gazeous explosives. In: Proceedings of 2nd International Meeting on Properties of Reactive Fluids, University of Poitiers, France (1996)Google Scholar
  54. 54.
    Legendre, J.F., Bauer, P., Giraud, M.: RAMAC 90, detonation initiation of insensitive dense methane-based mixtures by normal shock waves. In: Takayama, K., Sasoh, A. (eds.) Proceedings of the 3rd International Workshop on Ram Accelerators, Sendai, Japan, SWRC, pp. 223–231 (1997)Google Scholar
  55. 55.
    Legendre, J.F., Bauer, P., Giraud, M.: On the safety of dense methane-oxygen-nitrogen mixtures. In: 9th Symposium on Loss Prevention and Safety Promotion in the Process Industry, Barcelona, Spain (1998)Google Scholar
  56. 56.
    Legendre, J.F., Bauer, P., Giraud, M.: Detonation properties of helium-diluted dense methane-oxygen mixtures. Application to high performances in sub-detonative propulsion mode. In: Bauer, P. (ed.) Proceedings of the 4th International Workshop on Ram Accelerators, Poitiers, LCD, France (1999)Google Scholar
  57. 57.
    Legendre, J.F., Giraud, M.: Dual purpose launcher for ballistic research- RAMAC and SIBREF. In: Proceedings of 18th International Symposium on Ballistics, San Antonio, TX, USA (1999)Google Scholar
  58. 58.
    Legendre, J.F., Bauer, P., Giraud, M.: Helium dilution for Ram accelerator operation. Shock Waves 11(5), 361–367 (2002)Google Scholar
  59. 59.
    Giraud, M., Legendre, J.F., Simon, G., Catoire, L.: RAM accelerator in 90 mm caliber. first results concerning the scale effect in the thermally choked propulsion mode. In: Proceedings of 13th International Symposium on Ballistics, Stockholm, Sweden (1992)Google Scholar
  60. 60.
    Legendre, J.F., Giraud, M., Henner, M.: Velocity performance in RAMAC 90 multistage experiments. In: AIAA Joint Propulsion Conference, Cleveland, USA (1998)Google Scholar
  61. 61.
    Legendre, J.F., Giraud, M., Henner, M.: Ram accelerator: a new hypervelocity launcher for ballistic studies. HVIS 98, Huntsville, USA (1998)Google Scholar
  62. 62.
    Bengherbia, T.: Contribution to numerical simulation analysis of the flow in the Ram accelerator in the sub-detonative propulsion mode. Ph.D. Dissertation, LCD, CNRS, ENSMA, Poitiers, France (2009)Google Scholar
  63. 63.
    Bengherbia, T., Yao, Y., Bauer, P., Giraud, M., Knowlen, C.: Improved 1-D unsteady modeling of the thermally choked RAMAC in the sub-detonative propulsion mode. J. Appl. Mech 78, 150–167 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.ISL and Exobal Consulting OfficeSaint-LouisFrance
  2. 2.ISL: French-German Research Institute of Saint-LouisSaint-LouisFrance
  3. 3.PPRIME (LCD): Laboratoire de Combustion et de Détonique, ISAé-ENSMAPoitiersFrance

Personalised recommendations