Advertisement

The Ram Accelerator: Review of Experimental Research Activities in the U.S.

  • Adam P. BrucknerEmail author
  • Carl Knowlen
Chapter
Part of the Shock Wave Science and Technology Reference Library book series (SHOCKWAVES, volume 10)

Abstract

The ram accelerator, conceived at the University of Washington in 1983, is a scalable hypervelocity launcher, capable, in principle, of accelerating projectiles to velocities greater than 8 km/s. The device operates as an in-bore ramjet in which a subcaliber projectile, shaped like the centerbody of a cylindrical supersonic ramjet, is propelled through a stationary tube filled with a pressurized gaseous propellant mixture of fuel, oxidizer, and diluent. This propellant burns near the base of the moving projectile, generating thrust. The chemical energy density and speed of sound of the propellant can be adjusted, via gas pressure and composition, to control the in-tube Mach number and acceleration history of the projectile. Successful ram accelerator operation has been obtained at gas fill pressures up to 200 bar and projectile velocities up to 2.7 km/s. Scaling has been demonstrated in bore sizes ranging from 25 to 120 mm in research facilities around the world. Potential applications of the ram accelerator include hypervelocity impact studies, hypersonic propulsion research, kinetic energy weapons, and direct launch of acceleration-insensitive payloads to low Earth orbit. This paper presents an overview of the technology of the ram accelerator and its history and state-of-the-art in the United States.

Keywords

Mach Number Fill Pressure Army Research Laboratory Oblique Detonation Wave Ramjet Engine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Auzias de Turenne, J., Chew, G., Bruckner, A.P.: Recent results from the University of Washington’s ram accelerator. AIAA Paper 92-3782 (1992)Google Scholar
  2. 2.
    Bauer, P. (ed.): Fourth International Workshop on Ram Accelerators. J de Physique IV, vol. 10, Pr11. EDP Sciences, Les Ulis Cedex (2000)Google Scholar
  3. 3.
    Bauer, P., Knowlen, C., Bruckner, A.P.: Real gas effects on the prediction of ram accelerator performance. Shock Waves 8, 113–118 (1998)Google Scholar
  4. 4.
    Bauer, P., Knowlen, C., Bruckner, A.P.: One-dimensional modeling of ram accelerator at high acceleration rates in subdetonative regime. Journal de Physique, 29:253–258 (2005)Google Scholar
  5. 5.
    Bauer, P., Legendre, J.F., Knowlen, C., Higgins, A.: A review of detonation initiation techniques for insensitive dense methane-oxygen-nitrogen mixtures. Eur. Phys. J. Appl. Phys. AP2, 183–188 (1998)Google Scholar
  6. 6.
    Bengherbia, T., Yao, Y.F., Bauer, P., Knowlen, C.: Numerical study of gaseous reactive flow over a ram accelerator projectile in subdetonative velocity regime. Eur. Phys. J. Appl. Phys. 55, 11102 (2011)Google Scholar
  7. 7.
    Bogdanoff, D.W.: Ram accelerator direct space launch system: new concepts. J. Propul. Power 8, 481–490 (1992)Google Scholar
  8. 8.
    Bogdanoff, D.W.: Ram accelerator optimization and use of hydrogen core to increase projectile velocity. In: Takayama, K., Sasoh, A. (eds.) Ram Accelerator, pp. 159–166. Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Bogdanoff, D.W.: Strategies to protect ram accelerator projectiles from in-tube gasdynamic heating. J de Physique IV (France) 10, Pr11-185–Pr11-195 (2000)Google Scholar
  10. 10.
    Brackett, D.C., Bogdanoff, D.W.: Computational investigation of oblique detonation ramjet-in-tube concepts. J. Propul. Power 5, 276–281 (1989)Google Scholar
  11. 11.
    Bruckner, A.P.: The ram accelerator: A technology overview. AIAA Paper 2002-1014 (2002)Google Scholar
  12. 12.
    Bruckner, A.P., Hertzberg, A.: Ram accelerator direct launch system for space cargo. IAF Paper 87-211 (1987)Google Scholar
  13. 13.
    Bruckner, A.P., Knowlen, C.: Ram accelerator. In: Blockley, R., Shyy, W. (eds.) Encyclopedia of Aerospace Engineering. Wiley, New York (2010)Google Scholar
  14. 14.
    Bruckner, A.P., Knowlen, C., Hertzberg, A.: Applications of the ram accelerator to hypersonic aerothermodynamic testing. AIAA Paper 92-3949 (1992)Google Scholar
  15. 15.
    Bruckner, A.P., Chew, G., Auzias de Turenne, J., Dunmire, B.: Investigation of hypersonic ramjet propulsion cycles using a ram accelerator test facility. IAF Paper No. 91-275 (1991)Google Scholar
  16. 16.
    Bruckner, A.P., Knowlen, C., Hertzberg, A., Bogdanoff, D.W.: Operational characteristics of the thermally choked ram accelerator. J. Propul. Power 7, 828–836 (1991)Google Scholar
  17. 17.
    Bruckner, A.P., Burnham, E.A., Knowlen, C., Hertzberg, A., Bogdanoff, D.W.: Initiation of combustion in the thermally choked ram accelerator. In: Takayama, K. (ed.) Shock Waves, pp. 623–630. Springer, Berlin (1992)Google Scholar
  18. 18.
    Buckwalter, D., Knowlen, C., Bruckner, A.P.: Real gas effects on thermally choked ram accelerator performance. In: Takayama, K., Sasoh, A. (eds.) ram Accelerator, pp. 125–134. Springer, Heidelberg (1998)Google Scholar
  19. 19.
    Bundy, C.: Effects of unsteady flow and real gas equations of state on high pressure ram accelerator operation. Ph.D. Dissertation, Department of Aeronautics and Astronautics, University of Washington, Seattle (2001)Google Scholar
  20. 20.
    Bundy, C., Knowlen, C., Bruckner, A.P.: Elevated pressure experiments in a 38-mm-bore ram accelerator. AIAA Paper 98-3144 (1998)Google Scholar
  21. 21.
    Bundy, C., Knowlen, C., Bruckner, A.P.: Ram accelerator operating characteristics at fill pressures greater than 10 MPa. AIAA Paper 99-2261 (1999)Google Scholar
  22. 22.
    Bundy, C., Knowlen, C., Bruckner, A.P.: Ram accelerator operating characteristics at elevated fill pressures. J. Physique IV (France) 10, Pr11-11–Pr11-21 (2000)Google Scholar
  23. 23.
    Bundy, C., Knowlen, C., Bruckner, A.P.: Investigation of Ram Accelerator Operation at Fill Pressures up to 20 MPa. AIAA Paper 2000-3231 (2000)Google Scholar
  24. 24.
    Bundy, C., Knowlen, C., Bruckner, A.P.: Ram accelerator operation at 15 to 20 MPa fill pressure. In: 18th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), University of Washington, Seattle, July 29–August 3 (2001)Google Scholar
  25. 25.
    Bundy, C., Knowlen, C., Bruckner, A.: Unsteady effects on ram accelerator operation at elevated fill pressures. J. Propul. Power 20, 801–810 (2004)Google Scholar
  26. 26.
    Burnham, E.A.: Investigation of starting and ignition transients in the thermally choked ram accelerator. Ph.D. Dissertation, Department of Aeronautics and Astronautics, University of Washington, Seattle (1993)Google Scholar
  27. 27.
    Burnham, E.A., Kull, A.E., Knowlen, C., Bruckner, A.P., Hertzberg, A.: Operation of the ram accelerator in the transdetonative velocity regime. AIAA Paper 90-1985 (1990)Google Scholar
  28. 28.
    Chang, X., Matsuoka, S., Watanabe, T., Taki, S.: Ignition study for low pressure combustible mixture in a ram accelerator. In: Takayama, K., Sasoh, A. (eds.) ram Accelerator, pp. 105–109. Springer, Heidelberg (1998)Google Scholar
  29. 29.
    Chew, G., Bruckner, A.P.: A computational study of nose heating in the ram accelerator. AIAA Paper 94-2964 (1994)Google Scholar
  30. 30.
    Chew, G., Bruckner, A.P.: Computational study of projectile nose heating in a ram accelerator. In: Proceedings of RAMAC II, Second International Workshop on Ram Accelerators. University of Washington, Seattle, July 17–20 (1995)Google Scholar
  31. 31.
    Choi, J.Y., Jeung, I.S., Yoon, Y.: Numerical Study of Scram Accelerator Starting Characteristics. AIAA Paper 97-0915, 35th AIAA Aerospace Sciences Meeting, Reno (1997)Google Scholar
  32. 32.
    Choi, J.Y., Jeung, I.S., Yoon, Y.: Numerical investigation of ram accelerator flow field in expansion tube. In: Takayama, K., Sasoh, A. (eds.) Ram Accelerator, pp. 313–323. Springer, Heidelberg (1998)Google Scholar
  33. 33.
    Choi, J.Y., Lee, B.J., Jeung, I.S.: Computational modeling of high pressure combustion mechanism in scram accelerator. J de Physique IV (France) 10, Pr11-131–Pr11-141 (2000)Google Scholar
  34. 34.
    Ghorbanian, K., Pratt, D.T.: Doomed propellant fraction for a superdetonative ram accelerator. AIAA Paper 93-0359 (1993)Google Scholar
  35. 35.
    Giraud, M., Legendre, J.F., Simon, G., Henner, M., Voisin, D.: RAMAC in 90 mm Caliber or RAMAC90. Starting process, control of the ignition location and performance in the thermally choked propulsion mode. In: Proceedings of RAMAC II, Second International Workshop on Ram Accelerators, University of Washington, Seattle, July 17–20 (1995)Google Scholar
  36. 36.
    Henner, M., Giraud, M., Legendre, J.F., Berner, C.: CFD computations of steady and non-reactive flow around fin-guided ram projectiles. In: Takayama, K., Sasoh, A. (eds.) Ram Accelerator, pp. 325–332. Springer, Heidelberg (1998)Google Scholar
  37. 37.
    Hertzberg, A., Bruckner, A.P.: Study of a ram cannon for a space cargo launcher. Final Report, NASA Grant No. NAG 1-746, University of Washington, Seattle (1988)Google Scholar
  38. 38.
    Hertzberg, A., Bruckner, A.P., Bogdanoff, D.W.: The ram accelerator: a new chemical method of achieving ultrahigh velocities. In: Proceedings of 37th Meeting of the Aeroballistic Range Association, Quebec, Canada, September 9–12 (1986)Google Scholar
  39. 39.
    Hertzberg, A., Bruckner, A.P., Bogdanoff, D.W.: Ram accelerator: A new chemical method for accelerating projectiles to ultrahigh velocities. AIAA J. 26, 195–203 (1988)Google Scholar
  40. 40.
    Hertzberg, A., Bruckner, A.P., Knowlen, C.: Experimental investigation of ram accelerator propulsion modes. Shock Waves Int. J. 1, 17–25 (1991)Google Scholar
  41. 41.
    Higgins, A.J.: Comment on “Performance limits for projectile flight in the ram and external propulsion ram accelerators”. J. Propul. Power 15, 159–160 (1999)Google Scholar
  42. 42.
    Higgins, A.J.: Ram accelerators: outstanding issues and new directions. J. Propul. Power 22, 1170–1186 (2006)Google Scholar
  43. 43.
    Higgins, A.J., Knowlen, C., Bruckner, A.P.: Ram accelerator operating limits, Part 1: identification of limits. J. Propul. Power 14, 951–958 (1998)Google Scholar
  44. 44.
    Higgins, A.J., Knowlen, C., Bruckner, A.P.: Ram accelerator operating limits, Part 2: nature of observed limits. J. Propul. Power 14, 959–966 (1998)Google Scholar
  45. 45.
    Higgins, A.J., Knowlen, C., Kiyanda, C.B.: Gasdynamic operation of baffled tube ram accelerator in highly energetic mixtures. In: 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, McGill University, Montreal Canada, July 31–August 5 (2005)Google Scholar
  46. 46.
    Hinkey, J.B., Burnham, E.A., Bruckner, A.P.: High spatial resolution measurements of ram accelerator gas dynamic phenomena. AIAA Paper 92-3244 (1992)Google Scholar
  47. 47.
    Hinkey, J.B., Burnham, E.A., Bruckner, A.P.: Investigation of ram accelerator flow fields induced by canted projectiles. AIAA Paper 93-2186 (1993)Google Scholar
  48. 48.
    Kaloupis, P., Bruckner, A.P.: The ram accelerator: a chemically driven mass launcher. AIAA Paper 88-2968 (1988)Google Scholar
  49. 49.
    Knowlen, C.: Theoretical and experimental investigation of the thermodynamics of the thermally choked ram accelerator. Ph.D. Dissertation, Department of Aeronautics and Astronautics, University of Washington, Seattle (1991)Google Scholar
  50. 50.
    Knowlen, C., Bruckner, A.P.: A Hugoniot analysis of the ram accelerator. In: Takayama, K. (ed.) Shock Waves, pp. 617–622. Springer, Berlin (1992)Google Scholar
  51. 51.
    Knowlen, C., Bruckner, A.P.: Facility upgrade for high pressure ram accelerator experiments. Paper No. 9. In: Proceedings of RAMAC III, 3rd International Workshop on Ram Accelerators, Sendai, Japan, July 16–18 (1997)Google Scholar
  52. 52.
    Knowlen, C., Bruckner, A.P.: Direct space launch using ram accelerator technology, Space Technology and Applications Forum—STAIF 2001, El-Genk, M.S., ed., American Institute of Physics Conference Proceedings, pp. 583–588, February (2001)Google Scholar
  53. 53.
    Knowlen, C., Sasoh, A.: Ram accelerator performance modeling. In: Takayama, K., Sasoh, A. (eds.) Ram Accelerator, pp. 25–37. Springer, Heidelberg (1998)Google Scholar
  54. 54.
    Knowlen, C., Bruckner, A.P., Hertzberg, A.: Internal ballistics of the ram accelerator. In: 13th International Symposium on Ballistics, Stockholm, Sweden (1992)Google Scholar
  55. 55.
    Knowlen, C., Higgins, A.J., Bruckner, A.P.: Aerothermodynamics of the ram accelerator. AIAA Paper 95-0289 (1995)Google Scholar
  56. 56.
    Knowlen, C., Joseph, B., Bruckner, A.P.: Ram accelerator as an impulsive space launcher: Assessment of technical risks. International Space Development Conference (ISDC), Dallas TX, May 25–28 (2007)Google Scholar
  57. 57.
    Knowlen, C., Schultz, E., Bruckner, A.: Investigation of low velocity starting techniques for the ram accelerator. AIAA Paper 97-3174 (1997)Google Scholar
  58. 58.
    Knowlen, C., Higgins, A.J., Bruckner, A.P., Hertzberg, A.: In-tube photography of ram accelerator projectiles. In: Brun, R., Dumitrescu, L.Z. (eds.) Shock Waves @ Marseilles, vol. 1, pp. 189–194. Springer, Berlin (1995b)Google Scholar
  59. 59.
    Knowlen, C., Higgins, A.J., Hinkey, J.B., Burnham, E.A., Mattick, A.T.: Diagnostic techniques for ram accelerator phenomena. In: Proceedings of 43rd Meeting of the Aeroballistic Range Association, Columbus, OH, September 28–October 2 (1992)Google Scholar
  60. 60.
    Kruczynski, D.: Experimental demonstration of a 120 mm ram accelerator. In: 29th JANNAF Combustion Subcommittee Meeting, NASA Langley Research Center, Hampton October 19–23 (1992)Google Scholar
  61. 61.
    Kruczynski, D.: New experiments in a 120-mm ram accelerator at high pressures. AIAA Paper 93-2589 (1993)Google Scholar
  62. 62.
    Kruczynski, D.: Flow visualization of steady and transient combustion in a 120-mm ram accelerator. Report ARL-TR-1059, US Army Research Laboratory, Aberdeen (1996)Google Scholar
  63. 63.
    Kruczynski, D.: Experimental investigation of high pressure/performance ram accelerator operation. AIAA Paper 96-2676 (1996)Google Scholar
  64. 64.
    Kruczynski, D.L.: High performance ram accelerator research. In: Takayama, K., Sasoh, A. (eds.) Ram Accelerator, pp. 97–104. Springer, Heidelberg (1998)Google Scholar
  65. 65.
    Kruczynski, D.L.: Private Communication. UTRON Inc., Manassas (1998)Google Scholar
  66. 66.
    Kruczynski, D.L.: NAVRAM II: a system analysis of ram acceleration for specific naval applications. UTRON Inc., Manassas (2000)Google Scholar
  67. 67.
    Kruczynski, D.L., Nusca, M.J.: Experimental and computational investigation of scaling phenomena in a large caliber ram accelerator. AIAA Paper 92-3245 (1992)Google Scholar
  68. 68.
    Kruczynski, D., Liberatore, F.: Ram accelerator experiments with unique projectile geometries. AIAA Paper 95-2490 (1995)Google Scholar
  69. 69.
    Kruczynski, D., Knowlen, C., Bundy, C., Bruckner, A.P.: Low velocity start of ram accelerator: obturator and ignitor effects. AIAA Paper 99-2265 (1999)Google Scholar
  70. 70.
    Kull, A.E., Burnham, E.A., Knowlen, C., Bruckner, A.P., Hertzberg, A.: Experimental studies of superdetonative ram accelerator mode. AIAA Paper 89-2632 (1989)Google Scholar
  71. 71.
    Leblanc, J.E., Fujiwara. T.: Numerical simulation of the RAMAC benchmark test configuration. In: Proceedings of 3rd International Workshop on Ram Accelerators, Sendai, Japan, July 16–18 (1997)Google Scholar
  72. 72.
    Li, C., Kailasanath, K.: Highly transient flow features in ram accelerators. AIAA Paper 98-3148 (1998)Google Scholar
  73. 73.
    Li, C., Kailasanath, K.: Initiation mechanism of thermally choked combustion in ram accelerators. J. Propul. Power 15, 151–153 (1999)Google Scholar
  74. 74.
    Li, C., Kailasanath, K.: Starting performance of thermally choked ram accelerators at high mixture pressures. AIAA Paper 99-2950 (1999)Google Scholar
  75. 75.
    Li, C., Kailasanath, K., Oran, E.S.: Stability of projectiles in thermally choked ram accelerators. J. Propul. Power 12, 807–809 (1996)Google Scholar
  76. 76.
    Li, C., Kailasanath, K., Oran, E.S., Boris, J.P.: Numerical simulations of unsteady reactive flows in ram accelerators. In: Proceedings of First International Workshop on Ram Accelerator, Paper No. 29, French-German Research Institute (ISL), Saint-Louis, France, September 7–10 (1993)Google Scholar
  77. 77.
    Li, C., Kailasanath, K., Oran, E.S., Boris, J.P.: Pressure distributions on ram accelerator projectiles. In: Proceedings of RAMAC II, Second International Workshop on Ram Accelerators, University of Washington, Seattle, July 17–20 (1995)Google Scholar
  78. 78.
    Liu S., Bai, Z.Y., Jian, H.X.: Numerical calculation of 3-D flow field around ram accelerator projectile. AIAA Paper 2000-3238 (2000)Google Scholar
  79. 79.
    Liu S., Bai, Z.Y., Jian, H.X., Ping, X.H., Bu, S.Q.: 37-mm bore ram accelerator of CARDAC. In: Takayama, K., Sasoh, A. (ed.) Ram Accelerator. Springer-Verlag, Heidelberg, pp. 119–122 (1998)Google Scholar
  80. 80.
    Messersmith, N.L., Burke, M.J.: Ram accelerator ballistic launch requirements. AIAA Paper 95-2495 (1995)Google Scholar
  81. 81.
    Moon, G.W., Jeung, I.S., Choi, J.Y., Yoon, Y., Seiler, F., Patz, G., Smeets, G., Srulijes, J.: Numerical modeling and simulation of RAMAC 30 experiment carried out at the French-German Research Institute of Saint-Louis. J de Physique IV (France) 10, Pr11-143–Pr11-153 (2000)Google Scholar
  82. 82.
    Naumann, K.W.: Heating and ablation of projectiles during acceleration in a ram accelerator tube. AIAA Paper 93-2184 (1993)Google Scholar
  83. 83.
    Naumann, K.W.: Thermomechanical constraints on ram accelerator projectile design, AIAA Paper 96-2678 (1996)Google Scholar
  84. 84.
    Naumann, K.W., Bruckner, A.P.: Ram accelerator ballistic range concept for softly accelerating hypersonic free-flying models. J. Aircraft 31, 1310–1316 (1994)Google Scholar
  85. 85.
    Nusca, M.J.: Numerical simulation of fluid dynamics with finite rate and equilibrium combustion kinetics for the 120-mm ram accelerator. AIAA paper 93-2182 (1993)Google Scholar
  86. 86.
    Nusca, M.J.: Reacting flow simulation for a large scale ram accelerator. AIAA Paper 94-2963 (1994)Google Scholar
  87. 87.
    Nusca, M.J.: Reacting flow simulation for a large scale ram accelerator. J. Propul. Power 12, 61–69 (1996)Google Scholar
  88. 88.
    Nusca, M.J.: Investigation of ram accelerator flows for high pressure mixtures of various chemical compositions. AIAA Paper 96-2946 (1996)Google Scholar
  89. 89.
    Nusca, M.J.: Computational simulation of the ram accelerator using a coupled CFD/interior ballistic approach. AIAA Paper 97-2653 (1997)Google Scholar
  90. 90.
    Nusca, M.J.: Computational simulation of starting dynamics in a ram accelerator. AIAA Paper 98-3146 (1998)Google Scholar
  91. 91.
    Nusca, M.J.: Numerical simulations of unsteady ram accelerator flow phenomena. In: Takayama, K., Sasoh, A. (eds.) Ram Accelerator, pp. 305–312. Springer, Heidelberg (1998)Google Scholar
  92. 92.
    Nusca, M.J.: Numerical simulation of the ram accelerator using a new chemical kinetics mechanism. J. Propul. Power 18, 44–52 (2002)Google Scholar
  93. 93.
    Rom, J.: Performance limits for projectile flight in the ram and external propulsion accelerators. J. Propul. Power 13, 583–591 (1997)Google Scholar
  94. 94.
    Sasoh, A., Hirakata, S., Ujigawa, Y., Takayama, K.: Operation Tests of a 25 mm Bore Ram Accelerator. AIAA Paper 96-2677 (1996)Google Scholar
  95. 95.
    Schultz, E., Knowlen, C., Bruckner, A.P.: Detonation Limits Applied to the Subdetonative Ram Accelerator Starting Process. AIAA Paper 97-0807 (1997)Google Scholar
  96. 96.
    Schultz, E., Knowlen, C., Bruckner, A.P.: Overview of the subdetonative ram accelerator starting process. In: Takayama, K., Sasoh, A. (eds.) Ram Accelerator, pp. 189–203. Springer, Heidelberg (1998)Google Scholar
  97. 97.
    Schultz, E., Knowlen, C., Bruckner, A.P.: Starting envelope of the subdetonative ram accelerator. J. Propul. Power 16, 1040–1052 (2000)Google Scholar
  98. 98.
    Seiler, F., Naumann, K.W.: Bow shock wave heating and ablation of a sharp-nosed projectile flying inside a ram accelerator. In: Brun, R., Dumitrescu, L.Z. (eds.) Shock Waves @ Marseille, vol. 1, pp. 183–188. Springer, Berlin (1995)Google Scholar
  99. 99.
    Seiler, F., Patz, G., Smeets, G., Srulijes, J.: Gasdynamic limits of ignition and combustion of a gas mixture in ISL’s RAMAC30 scram accelerator. In: Sturtevant, B., Shepherd, J.E., Hornung, H.G. (eds.) Proceedings of 20th International Symposium on Shock Waves, vol. II, pp. 1057–1062. World Scientific Singapore (1996)Google Scholar
  100. 100.
    Slutsky, S., Tamagno, J.: A feasibility study of the scramjet in-tube concept. Report AFAPL-TR-67-131 (classified), General and Applied Science Laboratories (GASL) Inc., Westbury, NY. (1967) (Note: Declassified in 1994)Google Scholar
  101. 101.
    Soetrisno, M., Imlay, S.T.: The flow field of a ram accelerator. AIAA Paper 91-1915 (1991)Google Scholar
  102. 102.
    Soetrisno, M., Imlay, S.T., Roberts, D.: Numerical simulations of the transdetonative ram accelerator combusting flow field on a parallel computer. AIAA Paper 92-3249 (1992)Google Scholar
  103. 103.
    Soetrisno, M., Imlay, S.T., Roberts, D.: Numerical simulations of the superdetonative ram accelerator combusting flow field. AIAA Paper 93-2185 (1993)Google Scholar
  104. 104.
    Stewart, J.F., Bruckner, A.P., Knowlen, C.: Effects of launch tube shock dynamics on initiation of ram accelerator operation. In: Takayama, K., Sasoh, A. (eds.) Ram Accelerator, pp. 181–188. Springer, Heidelberg (1998)Google Scholar
  105. 105.
    Stewart, J.F., Knowlen, C., Bruckner, A.P.: Effects of launch tube gases on starting of the ram accelerator. AIAA Paper 97-3175 (1997)Google Scholar
  106. 106.
    Takayama, K., Sasoh, A. (eds.): Ram Accelerator. Springer, Heidelberg (1998)Google Scholar
  107. 107.
    Taki, S., Zhang, C., Chang, X.: Numerical simulation of the unsteady process in starting of ram accelerator. In: Takayama, K., Sasoh, A. (eds.) Ram Accelerator, pp. 215–221. Springer, Heidelberg (1998)Google Scholar
  108. 108.
    Witcofski, R.D., Scallion, W.I., Carter, D.J., Courter, R.W.: An advanced hypervelocity aerophysics facility: A ground-based flight test range. AIAA Paper 91-0296 (1991) Google Scholar
  109. 109.
    Witherspoon, F.D., Kruczynski, D.L.: Gun launch to space: a discussion of technology options. Space Energy Transp. 5(4) (2000)Google Scholar
  110. 110.
    Yungster, S.: Navier-Stokes simulation of the supersonic combustion flowfield in a ram accelerator. AIAA Paper 91-1916 (1991)Google Scholar
  111. 111.
    Yungster, S., Bruckner, A.P.: Computational studies of a superdetonative ram accelerator mode. J. Propul. Power 8, 457–463 (1992)Google Scholar
  112. 112.
    Yungster, S., Eberhardt, S., Bruckner, A.P.: Numerical simulation of hypervelocity projectiles in detonable gases. AIAA J. 29, 187–199 (1991)Google Scholar
  113. 113.
    Zhang, C., Taki, S.: Numerical study of shock induced ignition and combustion of CH4-O2-CO2 mixtures in a two dimensional ram accelerator. J de Physique IV (France) 10(Pr11), 155–164 (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.William E. Boeing Department of Aeronautics and AstronauticsUniversity of WashingtonSeattleUSA

Personalised recommendations