Advertisement

Experimental Methods of Shock Wave Research for Solids

  • Toshimori SekineEmail author
Chapter
Part of the Shock Wave Science and Technology Reference Library book series (SHOCKWAVES, volume 10)

Abstract

Shock waves in solids are more complex than those in gases, because a solid behaves as elastic and plastic media depending upon the stress level and strain rate.

Keywords

Shock Wave Shock Compression Copper Powder Streak Camera Shock Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Asay, J.R.:  Isentropic compression experiments on the Z accelerator. In: Furnish, M.D., Chahabildas, L.C., Hixon, R.S. (eds.) Shock Compression of Condensed Matter-1999, pp. 261–266. American Institute of Physics, New York (2000)Google Scholar
  2. 2.
    Baker, L., Hollenbach, R.: Laser interferometer for measuring high velocities of any reflecting surface. J. Appl. Phys. 43, 4669–4674 (1972)CrossRefGoogle Scholar
  3. 3.
    Bolme, C.A., et al.: Simple shot measurements of laser driven shock waves using ultrafast dynamic ellipsometry. J. Appl. Phys. 102, 033513 (2007)CrossRefGoogle Scholar
  4. 4.
    Cable, A.J.: Hypervelocity accelerators. In: Kinslow, R. (ed.) High-Velocity Impact Phenomena, pp. 1–21. Academic, New York (1970)Google Scholar
  5. 5.
    Celliers, P.M., et al.: Line-imageing velocimeter for shock diagnostic at the OMEGA laser facility. Rev. Sci. Instr. 75, 4916–4929 (2004)CrossRefGoogle Scholar
  6. 6.
    Collins, G.W., et al.: Measurements of the equation of state of deuterium at the fluid insulator-metal transition. Sci. 281, 1178–1181 (1998)CrossRefGoogle Scholar
  7. 7.
    Copparli, F. et al.: Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nat. Geosci. 6, 926–929 (2013)Google Scholar
  8. 8.
    DeCarli, P.S.: Shock wave synthesis of high pressure phases; comments on the origin of meteoritic diamond. In: Burls, J. (ed.) Science and Technology of Industrial Diamonds, vol. 1. Industrial Diamond Information Bureau, London (1967)Google Scholar
  9. 9.
    Dlott, D.D.: Ultrafast spectroscopy of shock waves in molecular materials. Annu. Rev. Phys. Chem. 50, 251–278 (1999)CrossRefGoogle Scholar
  10. 10.
    Dlott, D.D.: New developmemts in the physical chemistry of shock compression. Ann. Rev. Phys. Chem. 62, 575–597 (2011)CrossRefGoogle Scholar
  11. 11.
    Dorchies, F., et al.: High-power 1 kHz laser-plasma x-ray source for ultrafast x-ray absorption near-edge spectroscopy in the keV range. Appl. Phys. Lett. 93, 121113 (2008)CrossRefGoogle Scholar
  12. 12.
    Drake, R.P.: High-energy-density physics. Phys. Today 28–33 (2010)Google Scholar
  13. 13.
    Duvall, G.E., Graham, R.A.: Phase transitions under shock-wave loading. Rev. Mod. Phys. 49, 523–579 (1977)CrossRefGoogle Scholar
  14. 14.
    Egdell, R.G., et al.: On the difference in valence electron plasmon energy and density of states between beta- and cubic-Si3N4. J. Appl. Phys. 94, 6611–6615 (2003)CrossRefGoogle Scholar
  15. 15.
    Eggert, J.H. et al.: Melting temperature of diamond at ultrahigh pressure. Nat. Phys. 6, 40–43 (2010)Google Scholar
  16. 16.
    Erskine, D.J., Nellis, W.J.: Nature 317–349 (1991)Google Scholar
  17. 17.
    Furukawa, Y., et al.: Abiotic syntheses of amino acid, fatty acids and amines under oceanic impact conditions of the early Earth. Nature Geosci. 2, 62–66 (2009)CrossRefGoogle Scholar
  18. 18.
    Funk, D.J. et al.: Dynamic measurement of temperature using neutron response spectroscopy (MRS). In: Schmidt, S.C., Dandekar, D.P., Forbes, J.W. (eds.) Shock Waves in Condensed Matter-1997, pp. 887–890. American Institute of Physics, Woodbury (1998)Google Scholar
  19. 19.
    Glenzer, S.H., Redmer, R.: X-ray Thomson scattering in high energy density plasmas. Rev. Modern Phys. 81, 1625–1663 (2009)CrossRefGoogle Scholar
  20. 20.
    Graber, T., et al.: BioCARS: a synchrotron resource for time-resolved X-ray science. J. Synchrotron Rad. 18, 658–670 (2011)CrossRefGoogle Scholar
  21. 21.
    Grady, D.E.: Structured shock waves and the fourth-power law. J. Appl. Phys. 107, 013506 (2010)CrossRefGoogle Scholar
  22. 22.
    Graham, R.A., et al.: Pressure measurements in chemically reacting powder mixtures with the Bauer piezoelectric polymer gauge. Shock Waves 3, 78–82 (1993)CrossRefGoogle Scholar
  23. 23.
    Hayes, D.B. et al.: Continuous index of refraction measurements to 20 GPa in Z-cut sapphire. J. Appl. Phys. 94, 2331 (2003)Google Scholar
  24. 24.
    He, H., et al.: Shock-induced phase transition of Si3N4 to c-Si3N4. Phys. Rev. B 62, 114111417 (2000)CrossRefGoogle Scholar
  25. 25.
    He, H., et al.: Accurate measurement of the velocity history of a laser-driven foil plate with a push-pull type VISAR. Appl. Opt. 40, 6327–6333 (2001)CrossRefGoogle Scholar
  26. 26.
    He, H., et al.: Time-resolved measurement on ablative acceleration of foil plates driven by pulsed laser beam. Rev. Sci. Instr. 72, 2032–2035 (2001)CrossRefGoogle Scholar
  27. 27.
    He, H., et al.: Phase transformation of germanium nitride (Ge3N4) under shock wave compression. J. Appl. Phys. 90, 4403–4406 (2001)CrossRefGoogle Scholar
  28. 28.
    He, H., et al.: Direct transformation of cubic diamond to hexagonal diamond. Appl. Phys. Lett. 81, 610–612 (2002)CrossRefGoogle Scholar
  29. 29.
    Hintzen, H.T., et al.: Thermal expansion of cubic Si3N4 with the spinel structure. J. Alloy Comp. 351, 40–42 (2003)CrossRefGoogle Scholar
  30. 30.
    Holtkamp, D.B. et al.: A survey of high explosive-induced damage and spall in selected metals using proton radiography. In: Furnish, M.D., Gupta, Y.M., Forbes, J.W. (eds.) Shock Compression in Condensed Matter-2003, pp. 477–482 (2004)Google Scholar
  31. 31.
    Jensen, B.J., et al.: Accuracy limits and window corrections for photon Doppler velocimetry. J. Appl. Phys. 101, 013523 (2007)CrossRefGoogle Scholar
  32. 32.
    Johnson, Q., Mitchell, A.C.: First x-ray diffraction evidence for a phase transition during shock-wave compression. Phys. Rev. Lett. 29, 1369–1371 (1972)CrossRefGoogle Scholar
  33. 33.
    Kiefer, R., et al.: Strength, elasticity, and equation of state of the nanocrystalline cubic silicon nitride-Si3N4 to 68 GPa. Phys. Rev. B 72, 014102 (2005)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Koenig, K., et al.: High pressures generated by laser driven shocks: applications to planetary physics. Necl. Fusion 44, S208–S214 (2004)CrossRefGoogle Scholar
  35. 35.
    Knudson, M.D., et al.: Shock-wave exploration of the high-pressure phases of carbon.Science 322, 1822–1825 (2008)CrossRefGoogle Scholar
  36. 36.
    Langenhorst, F. et al.: Chapter 1. Experimental techmiques for the simulation of shock metamorphism: a case study on calcite. In: Davison, L., Horir, Y., Sekine, T. (eds.) High-Pressure Shock Compression of Solids V Shock Chemistry with Applications to Meteorite Impacts. Springer, New York (2003)Google Scholar
  37. 37.
    Lee, K.K., et al.: Laser-driven shock experiments on precompressed water: Implications for “icy” giant planets. J. Chem. Phys. 125, 014701 (2006)CrossRefGoogle Scholar
  38. 38.
    Leitch, S., et al.: Properties of non-equivalent sites and bandgap of spinel-phase silicon nitride. J. Phys.: Cond. Mat. 16, 6469–6476 (2004)Google Scholar
  39. 39.
    Lemke, R.W., et al.: Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments. J. Appl. Phys. 98, 073530 (2005)CrossRefGoogle Scholar
  40. 40.
    Liu, A.Y., Cohen, M.L.: Prediction of new low compressibility solids. Science 245, 841-842 (1989)Google Scholar
  41. 41.
    McGrane, S.D., et al.: Shock induced reaction observed via ultrafast infrared absorption in poly(vinyl nitrate) films. J. Phys. Chem. A 108, 9342–9347 (2004)CrossRefGoogle Scholar
  42. 42.
    McQueen, R.G., Marsh, S.P., Taylor, J.W., Fritz, J.N., Carter, W.J.: The equation of state of solids from shock wave studies. In: Kinslow, R. (ed.) High-Velocity Impact Phenomena, pp. 293–417. Academic, New York (1970)Google Scholar
  43. 43.
    McWilliliams, R.S., et al.: Phase transformations and metallization of magnesium oxide at high pressure and temperature. Science 338, 1330–1333 (2012)CrossRefGoogle Scholar
  44. 44.
    Milathianaki, D., et al.: Femtosecond visualization of lattice dynamics in shock-compressed matter. Science 342, 220–223 (2013)CrossRefGoogle Scholar
  45. 45.
    Miller, J.E., et al.: Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA. Rev. Sci. Instr. 78, 034903 (2007)CrossRefGoogle Scholar
  46. 46.
    Nakazawa, H., et al.: High yield shock synthesis of ammonia from iron, water and nitrogen available on the early Earth. Earth Planet. Sci. Lett. 235, 356–360 (2005)CrossRefGoogle Scholar
  47. 47.
    Nellis, J.W.: Dynamic compression of materials: metallization of fluid hydrogen at high pressures. Rep. Prog. Phys. 69, 1479–1480 (2006)CrossRefGoogle Scholar
  48. 48.
    Pangilinan, G.I., Gupta, Y.M.: Use of time-resolved Raman scattering to determine temperatures in shocked carbon tetrachloride. J. Appl. Phys. 81, 6662–6669 (1997)CrossRefGoogle Scholar
  49. 49.
    Paterson, M.S.: Nonhydrostatic thermodynamics and its geologic applications. Rev. Geophys. Space Phys. 11, 355 (1973)CrossRefGoogle Scholar
  50. 50.
    Remington, B.A., et al.: Experimental astrophysics with high power lasers and Z pinches. Rev. Modern Phys. 78, 755–807 (2006)CrossRefGoogle Scholar
  51. 51.
    Renlund, A.M. et al.: Time-resolved infrared spectral photography. In: Gupta, Y.M. (ed.) Shock Waves in Condensed Matter-1985, pp. 237–242. Plenum, New York (1986)Google Scholar
  52. 52.
    Rigg, P.A., et al.: Proton radiography and accurate density measurements: A window into shock wave processes. Phys. Rev. B 77, 220101(R) (2008)CrossRefGoogle Scholar
  53. 53.
    Rygg, J.R., et al.: Powder diffraction from solids in the terapascal regime. Rev. Sci. Instr. 83, 113904 (2012)CrossRefGoogle Scholar
  54. 54.
    Robin, P.F.: Thermodynamic equilibrium across a coherent interface in a stressed crystal. Am. Mineral. 59, 1286–1298 (1974)Google Scholar
  55. 55.
    Roybal, R., et al.: Laboratory simulation of hypervelocity debris. Int. J. Impact Eng. 17, 707–718 (1995)CrossRefGoogle Scholar
  56. 56.
    Sato, T., et al.: Formation of cubic boron nitride from rhombohedral boron nitride by explosive shock compression. J. Am. Ceram. Soc. 65, C162 (1982)CrossRefGoogle Scholar
  57. 57.
    Schmidt, A.C. et al.: Raman spectroscopies in shocked-compressed materials. In: Asay, J.R., Graham, R.A., Straub, R.A. (eds.) Shock Compression in Condensed Matter-1983, pp. 293–302 (1984)Google Scholar
  58. 58.
    Sekine, T.: Shock synthesis of cubic silicon nitride. J. Am. Ceram. Soc. 85, 113–116 (2002)CrossRefGoogle Scholar
  59. 59.
    Sekine, T.: Shock wave chemical synthesis; synthesis of carbon nitrides. Mat. Sci. Forum 566, 125–128 (2008)CrossRefGoogle Scholar
  60. 60.
    Sekine, T., et al.: Shock-induced transformation of b-Si3N4 to a high-pressure cubic spinel structure. Appl. Phys. Lett. 76, 3706–3708 (2000)CrossRefGoogle Scholar
  61. 61.
    Sekine, T., Kobayashi, T.: Time-resolved measurements of high-pressure phase transition of fluorite under shock loading. Phys. Chem. Mineral. 38, 305–310 (2011)CrossRefGoogle Scholar
  62. 62.
    Sekine, T., et al.: High temperature metastability of cubic spinel Si3N4. Appl. Phys. Lett. 79, 2719–2721 (2001)CrossRefGoogle Scholar
  63. 63.
    Sekine, T., et al.: 29Si magic angle spinning nuclear magnetic resonance study of spinel-type Si3N4. Appl. Phys. Lett. 78, 3050–3051 (2001)CrossRefGoogle Scholar
  64. 64.
    Sekine, T., et al.: Cubic Si6-zAlzOzN8-z (z=1.8 and 2.8) spinels formed by shock compression. Chem. Phys. Lett. 344, 395–399 (2001)CrossRefGoogle Scholar
  65. 65.
    Sekine, T., et al.: New high-pressure phase of SiAlON. Key Eng. Mat. 237, 153–160 (2003)CrossRefGoogle Scholar
  66. 66.
    Sekine, T., et al.: Aluminum oxynitride at pressures up to 180 GPa. J. Appl. Phys. 94, 4803–4806 (2003)CrossRefGoogle Scholar
  67. 67.
    Sekine, T., et al.: Sinoite (Si2N2O) shocked at pressures of 28 to 64 GPa.Am. Mineral. 91, 463–466 (2006)CrossRefGoogle Scholar
  68. 68.
    Sekine, T., et al.: Hugoniot of beta-SiAlON and high-pressure phase transitions. J. Appl. Phys. 99, 053501 (2006)CrossRefGoogle Scholar
  69. 69.
    Sekine, T. et al.: Shock compression of magnesium silicon nitride. In: Elert, M., Furnish, M.D., Chau, R., Holmes, N., Nguyen, J., (eds.) Shock Compression of Condensed Matter-2007, pp. 189–192. American Institute of Physics (2007)Google Scholar
  70. 70.
    Smith, R.F., et al.:  Stiff response of aluminum under ultrafast shockless compression to 110 GPa. Phys. Rev. Lett. 98, 065701 (2007)CrossRefGoogle Scholar
  71. 71.
    Soma, T., et al.: Characterization of wurtzite type boron nitride synthesized by shock compression. Mat. Res. Bull. 9, 755–762 (1974)CrossRefGoogle Scholar
  72. 72.
    Spaulding, D.K., et al.: Evidence for a phase transition in silicate melt at extreme pressure and temperature conditions. Phys. Rev. Lett. 108, 065701 (2002)CrossRefGoogle Scholar
  73. 73.
    Stand, O.T., et al.: Compact system for high-speed velocimetry using heterodyne techniques. Rev. Sci. Instr. 77, 083108 (2006)CrossRefGoogle Scholar
  74. 74.
    Suggit, M.J., et al.: Nanosecond white-light Laue diffraction measurements of dislocation microstructure in shock-compressed single-crystal copper. Nature Comm. 3, 1224 (2012)CrossRefGoogle Scholar
  75. 75.
    Tanaka, I., et al.: Hardness of cubic silicon nitride. J. Mat. Res. 17, 731–733 (2002)CrossRefGoogle Scholar
  76. 76.
    Tatsumi, Y., et al.: heoretical prediction of post-spinel phases of silicon nitride. J. Am. Ceram. Soc. 85, 7–10 (2002)CrossRefGoogle Scholar
  77. 77.
    Trueb, L.F.: Microstructural study of diamonds synthesized under conditions of high temperature and moderate explosive shock pressure. J. Appl. Phys. 42, 503–510 (1971)CrossRefGoogle Scholar
  78. 78.
    Trunin, R.F.: Shock Compression of Condensed Materials. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  79. 79.
    Turneaure, S.J., et al.: Real-time x-ray diffraction at the impact surface of shocked crystals. J. Appl. Phys. 111, 026101 (2009)CrossRefGoogle Scholar
  80. 80.
    Valenzuela, A.R., et al.: Photonic Doppler velocimetry of laser-ablated ultrathin metals. Rev. Sci. Instr. 78, 013101 (2007)CrossRefGoogle Scholar
  81. 81.
    Visco, A.J., et al.: Measurement of radiative shock properties by x-ray Thomson scattering. Phys. Rev. Lett. 108, 145001 (2012)CrossRefGoogle Scholar
  82. 82.
    Wark, J.S., et al.: Subnanosecond x-ray diffraction from laser-shocked crystals. Phys. Rev. B 40, 5705–5714 (1989)CrossRefGoogle Scholar
  83. 83.
    Weng, J., et al.: Optical-fiber interferometer for velocity measurements with picosecond resolution. Appl. Phys. Lett. 89, 111101 (2006)CrossRefGoogle Scholar
  84. 84.
    Whitley, V.H., et al.: The elastic-plastic response of aluminum films to ultrafast laser-generated shocks. J. Appl. Phys. 109, 013505 (2011)CrossRefGoogle Scholar
  85. 85.
    Wittenberg, J.S., et al.: Wurtzite to rock salt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves: Transition from single to multiple nucleation. Phys. Rev. Lett. 103, 125701 (2009)CrossRefGoogle Scholar
  86. 86.
    Yaakobi, B., et al.: EXAFS Measurement of Iron bcc-to-hcp phase transformation in nanosecond-laser shocks. Phys. Rev. Lett. 95, 075501 (2005)CrossRefGoogle Scholar
  87. 87.
    Yuan, V.W., et al.: Shock temperature measurement using neutron resonance spectroscopy. Phys. Rev. Lett. 94, 125504 (2005)CrossRefGoogle Scholar
  88. 88.
    Zerr, A. et al.: Recent advances in new hard high-pressure nitrides. Adv. Mat. 18, 2933–2948 (2006)Google Scholar
  89. 89.
    Zhang, Y., et al.: Energetics of cubic Si3N4. J. Mat. Res. 21, 41–44 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Earth and Planetary Systems ScienceHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations