Ballistic Range

Part of the Shock Wave Science and Technology Reference Library book series (SHOCKWAVES, volume 10)


Ballistic range is a kind of test facility, in which the test models or projectiles are launched at desired velocity, the aerodynamic properties of the flying models are measured during its flight, or shock and damage of the targets are measured upon the projectile impact.


Space Debris Boundary Layer Transition Shock Tunnel Hypervelocity Impact Ballistic Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to express sincere appreciation to Mr. Jinyang LUO, Mr. Yi LI, Mrs. Jie HUANG, Mr. Anhua SHI, Dr. Zhefeng YU, Mr. Hong CHEN, Mr. Dezhi JIAO, Mr. Fawei KE, Mrs. Lei ZHENG, and Mr. Yijian YAN for their invaluable help in the completion of this chapter.


  1. 1.
    National historic mechanical engineering landmark-aerodynamic range, The American Society Of Mechanical Engineers (1982)Google Scholar
  2. 2.
    Crozier, W.D., Hume, W.: High-velocity light gas gun. J. Appl. Phys. 28(8), 892–894 (1957)CrossRefGoogle Scholar
  3. 3.
    Pope, A., Goin, KL.: High-Speed Wind Tunnel Testing. Wiley, New York (1965)Google Scholar
  4. 4.
    Canning, T.N., Seiff, A., James, C.: Ballistic range technology, AGARDograph No. 138 (1970)Google Scholar
  5. 5.
    Lukasiewicz, J.: Experimental Methods of Hypersonics. Marcel Dekker, Inc, New York (1973)Google Scholar
  6. 6.
    Reda, D.C.: Correlation of nosetip boundary layer transition data measures in ballistic-range experiments, AIAA 1980-0286Google Scholar
  7. 7.
    Strawa, A.W., Chapman, G.T., et al.: Ballistic range and aerothermodynamic testing. J. Aircr. 28(7) (1991)Google Scholar
  8. 8.
    Chapman, G.T.: The ballistic range—Its role and future in aerothermodynamic testing, AIAA 1992-3996Google Scholar
  9. 9.
    Jiang, W.B., et al.: Design of hypersonic test facilities, Press House of Defense Industry (of China) (2001)Google Scholar
  10. 10.
    Lu, F., Marren, D.: Advanced hypersonic test facilities. AIAA series of Progress in Astronautics and Aeronautics, vol. 138 (2002)Google Scholar
  11. 11.
    Impact and lethality Testing[EB/OL].
  12. 12.
    Cable, A.J.: Upgrade of the ballistic range facilities at AEDC: now complete. AIAA-94-2493Google Scholar
  13. 13.
  14. 14.
    Carver, D., Campbell, L.L., Roebuck, B.: Large-scale, hypervelocity, high-fidelity interceptor lethality development in AEDC’s range G. Int. J. Impact Eng. 35–1459 (2008)Google Scholar
  15. 15.
    Campbell, L.L., Cable, A.J.: The upgraded ballistic range facilities at aedc. Int. J. Impact Eng. 17, 131–138 (1995)CrossRefGoogle Scholar
  16. 16.
    Young, R.P., Rushing, J.R.: Expanded impact test capabilities of the aronold engineering development center, AIAA 96-4241Google Scholar
  17. 17.
    Cable, A.J.: Upgrade of the ballistic range facilities at AEDC: the half-way point, AIAA-92–3997Google Scholar
  18. 18.
    Salinas, I.T., Cornelison, C.: Test planning guide for ASF facilities. 029-9701-XM3 Rev. B March (1999)Google Scholar
  19. 19.
    Grinstead, J.H., Wilder, M.C., Reda, DC., Cornelison, CJ.: Shock tube and ballistic range facilities at NASA ames research center. Technical report RTO-EN-AVT-186, NATO (2010)Google Scholar
  20. 20.
    Reda, D.C., Wilder, M.C.: Transition experiments on blunt cones with distributed roughness in hypersonic flight. J. Spacecraft Rockets 50(3), 504–507 (2013)CrossRefGoogle Scholar
  21. 21.
    Hayami, R.A.: The application of light gas gun facilities for hypervelocity aerophysics research, AIAA 92-3998Google Scholar
  22. 22.
  23. 23.
    Liquornik, D.J., Yang, F.W., Zwiener, M.C., etc.: Active attitude control of gun launched projectiles. Int. J. Impact Eng. 23, 561–572 (1999)Google Scholar
  24. 24.
  25. 25.
    Stilp, A.J.: Aeroballistic and impact physics research at emi and historical overview. Int. J. Impact Eng. 17, 785–805 (1995)CrossRefGoogle Scholar
  26. 26.
    Alwes, D.: Columnus-viewport glass plane hypervelocity impact testing and analysis. Int. J. Impact Eng. 10, 1–22 (1990)CrossRefGoogle Scholar
  27. 27.
    Destefanis, R., Faraud, M.: Testing of advanced materials for high resistance debris shielding. Int. J. Impact Eng. 20, 209–222 (1997)CrossRefGoogle Scholar
  28. 28.
    Thoma, K., Schäfer, F., Hiermaier, S., et al.: An approach to achieve progress in spacecraft shielding. Adv. Space Res. 34, 1063–1075 (2004)CrossRefGoogle Scholar
  29. 29.
    Schäfer, F., Putzar, R., Lambert, M., et al.: Vulnerability of satellite equipment to hypervelocity impacts. 59th International Astronautical Congress (2008)Google Scholar
  30. 30.
    Vergniaud, J.B., Guyot, M., Lambert, M., et al.: Structural vibrations induced by HVI—Application to the Gaïa spacecraft. Int. J. Impact Eng. 35, 1836–1843 (2008)CrossRefGoogle Scholar
  31. 31.
    Hoerth, T., Schafer, F., Thoma, K., et al.: Hypervelocity impacts on dry and wet sandstone: observations of ejecta dynamics and crater growth. Meteorit. Planet. Sci. 48(1), 23–32 (2013)CrossRefGoogle Scholar
  32. 32.
    Rudolph, M., Schimmerohn, M., Osterholz, J., et al.: Electrical signatures of hypervelocity impact plasma with applications in in-situ particle detection. Acta Astronaut. 101, 157–164 (2014)CrossRefGoogle Scholar
  33. 33.
    Liu, S., Huang, J., Li, Y.: Hypervelocity impact tests for spacecraft against orbital debris at HAI, CARDC. 59th International Astronautical Congress (2008)Google Scholar
  34. 34.
    Reda, D.C., et al.: Aerothermodynamic testing of ablative reentry vehicle nosetip materials in hypersonic ballistic-range environments, AIAA 2004-6829Google Scholar
  35. 35.
    Wilder, M.C., et al. Free-flight measurements of convective heat transfer rates in hypersonic ballistic-range environments, AIAA 2007-4404Google Scholar
  36. 36.
    Harris, H., Hendix, R.: Upgrade in optical measurement capabilities of AEDC ballistic ranges, AIAA 1994-0672Google Scholar
  37. 37.
    IADC WG3 members. Protection manual. IADC-WD-00-03 Version 4.0, Revision 8. March 12 (2010)Google Scholar
  38. 38.
    Liu, S., Li, Y., Huang, J., Luo, JY., Xie, A.M., Shi, A.H.: Hypervelocity impact test results of whipple shield for the validation of numerical simulation. J. Astronaut. 26(4) (2005)Google Scholar
  39. 39.
    Mayer, M.A.: Dynamic Behavior of Materials. Wiley, New York (1994)Google Scholar
  40. 40.
    Solid State Physics, vol. 6, pp. 1–63. Academic Press. Inc., New York (1958)Google Scholar
  41. 41.
    Asay, J.R.: The use of shock-structure methods for evaluating high-pressure material propertics. Int. J. Impact Eng. 20, 27–61 (1997)CrossRefGoogle Scholar
  42. 42.
    Sultanov, V.G., Kim, V.V., Lomonosov, I.V., et al.: Numerical modeling of deep impact experiment. Int. J. Impact Eng 35, 1816–1820 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Hypervelocity Aerodynamics Institute (HAI)China Aerodynamics Research and Development Center (CARDC)MianyangPeople’s Republic of China

Personalised recommendations