Skip to main content

Adjuvant Systemic Chemotherapy for HER2-Negative Disease

  • Chapter
  • First Online:
  • 1667 Accesses

Abstract

Breast cancer is a heterogeneous, phenotypically diverse disease comprising several biological subtypes with distinct behaviors and responses to therapy. All patients with invasive breast cancer should be evaluated to assess the need for adjuvant cytotoxic therapy, trastuzumab, and/or endocrine therapy. If patients must receive endocrine therapy (either tamoxifen or aromatase inhibitor) and cytotoxic therapy as adjuvant therapy, chemotherapy should precede endocrine therapy. The pathology report must provide uniform information about the tumor and should include at a minimum the parameters recommended in the ASCO-CAP guideline. Molecular subtypes of breast cancer can be distinguished by common pathological variables, including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor (HER2), and Ki67 index. The inclusion of chemotherapy in the adjuvant regimen depends on the intrinsic subtype. Multigene expression array profiling is not always required for subtype definition after clinicopathological assessment. Young age, grade 3 disease, lymphovascular invasion, one to three positive nodes, and large tumor size are not adequate features to omit molecular diagnostics in the decision of adjuvant chemotherapy. Any lymph node positivity should not be a sole indication for adjuvant chemotherapy. However, patients with more than three involved lymph nodes, low hormone receptor positivity, positive HER2 status, triple-negative status, high 21-gene RS (e.g., >25), and high-risk 70-gene scores should receive adjuvant chemotherapy. A high Ki67 proliferation index and histological grade 3 tumors are acceptable indications for adjuvant chemotherapy. For women desiring fertility preservation and for patients with certain comorbidities such as cardiovascular disease and diabetic neuropathy, specific chemotherapy regimens may be preferred.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Landia S, Murray T, Bolden S, Wingo P. Cancer statistics. CA Cancer J Clin. 1999;49:31.

    Google Scholar 

  2. Berry D, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med. 2005;353:1784–92.

    Article  CAS  PubMed  Google Scholar 

  3. Fisher B, Dignam J, Tan-Chiu E, Anderson S, Fisher ER, Wittliff JL, et al. Prognosis and treatment of patients with breast tumors of one centimeter or less and negative axillary lymph nodes. J Natl Cancer Inst. 2001;93:112–20.

    Article  CAS  PubMed  Google Scholar 

  4. Clarke M. Meta-analyses of adjuvant therapies for women with early breast cancer: the Early Breast Cancer Trialists’ Collaborative Group overview. Ann Oncol. 2006;17 Suppl 10:x59–62.

    Article  PubMed  Google Scholar 

  5. Loprinzi CL, Thome SD. Understanding the utility of adjuvant systemic therapy for primary breast cancer. J Clin Oncol. 2001;19:972–9.

    CAS  PubMed  Google Scholar 

  6. Ravdin PM, Siminoff LA, Davis GJ, Mercer MB, Hewlett J, Gerson N, et al. Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J Clin Oncol. 2001;19:980–91.

    CAS  PubMed  Google Scholar 

  7. Surveillance Research Program, National Cancer Institute SEER*Stat software (seer.cancer.gov/seerstat), released January 2015.

    Google Scholar 

  8. van der Hage JA, Mieog JS, van de Velde CJ, Putter H, Bartelink H, van de Vijver MJ. Impact of established prognostic factors and molecular subtype in very young breast cancer patients: pooled analysis of four EORTC randomized controlled trials. Breast Cancer Res. 2011;13:R68.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365:1687–717.

    Article  CAS  Google Scholar 

  10. Li CI, Uribe DJ, Daling JR. Clinical characteristics of different histologic types of breast cancer. Br J Cancer. 2005;93:1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12:R68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Perou CM, Parker JS, Prat A, Ellis MJ, Bernard PS. Clinical implementation of the intrinsic subtypes of breast cancer. Lancet Oncol. 2010;11:718–9 [author reply 720–711].

    Article  PubMed  Google Scholar 

  13. Perou CM, Sørlie T, Elsen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  14. Sørlie T. Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer. 2004;40:2667–75.

    Article  PubMed  CAS  Google Scholar 

  15. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C, et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol. 2007;25:1239–46.

    Article  CAS  PubMed  Google Scholar 

  16. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  CAS  Google Scholar 

  18. Russnes HG, Vollan HK, Lingjaerde OC, Krasnitz A, Lundin P, Naume B, et al. Genomic architecture characterizes tumor progression paths and fate in breast cancer patients. Sci Transl Med. 2010;2:38ra47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007;8:R76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Weigelt B, Horlings HM, Kreike B, Hayes MM, Hauptmann M, Wessels LF, et al. Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol. 2008;216:141–50.

    Article  CAS  PubMed  Google Scholar 

  22. Cheang MC, Voduc KD, Tu D, Jiang S, Leung S, Chia SK, et al. Responsiveness of intrinsic subtypes to adjuvant anthracycline substitution in the NCIC.CTG MA.5 randomized trial. Clin Cancer Res. 2012;18:2402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27:1160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Reis PP, Waldron L, Goswami RS, Xu W, Xuan Y, Perez-Ordonez B, et al. mRNA transcript quantification in archival samples using multiplexed, color-coded probes. BMC Biotechnol. 2011;11:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chia SK, Bramwell VH, Tu D, Shepherd LE, Jiang S, Vickery T, et al. A 50-gene intrinsic subtype classifier for prognosis and prediction of benefit from adjuvant tamoxifen. Clin Cancer Res. 2012;18:4465–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weigelt B, Mackay A, A’Hern R, Natrajan R, Tan DS, Dowsett M, et al. Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol. 2010;11:339–49.

    Article  CAS  PubMed  Google Scholar 

  27. de Ronde JJ, Hannemann J, Halfwerk H, Mulder L, Straver ME, Vrancken Peeters MJ, et al. Concordance of clinical and molecular breast cancer subtyping in the context of preoperative chemotherapy response. Breast Cancer Res Treat. 2010;119:119–26.

    Article  PubMed  CAS  Google Scholar 

  28. Fountzilas G, Valavanis C, Kotoula V, Eleftheraki AG, Kalogeras KT, Tzaida O, et al. HER2 and TOP2A in high-risk early breast cancer patients treated with adjuvant epirubicin-based dose-dense sequential chemotherapy. J Transl Med. 2012;10:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Foekens JA, Schmitt M, van Putten WL, Peters HA, Bontenbal M, Ja¨nicke F, et al. Prognostic value of urokinase-type plasminogen activator in 671 primary breast cancer patients. Cancer Res. 1992;52:6101–5.

    CAS  PubMed  Google Scholar 

  30. Gondi CS, Kandhukuri N, Dinh DH, Gujrati M, Rao JS. Downregulation of uPAR and uPA activates caspase mediated apoptosis, inhibits the PI3k/AKT pathway. Int J Oncol. 2007;31:19–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Luo J, Sun X, Gao F, Zhao X, Zhong B, Wang H, et al. Effects of ulinastatin and docetaxel on breast cancer invasion and expression of uPA, uPAR and ERK. J Exp Clin Cancer Res. 2011;29:30–71.

    Google Scholar 

  32. Look MP, van Putten WL, Duffy MJ, Harbeck N, Christensen IJ, Thomssen C, et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J Natl Cancer Inst. 2002;94(2):116–28.

    Article  CAS  PubMed  Google Scholar 

  33. Duffy MJ. Urokinase plasminogen activator, its inhibitor. PAI-1, as prognostic markers in breast cancer: from pilot to level 1 evidence studies. Clin Chem. 2002;48:1194–7.

    CAS  PubMed  Google Scholar 

  34. Ja¨nicke F, Prechtl A, Thomssen C, Harbeck N, Meisner C, Untch M, et al. Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1. J Natl Cancer Inst. 2001;93:913–20.

    Article  Google Scholar 

  35. Harbeck N, Kates RE, Gauger K, Willems A, Kiechle M, Magdolen V, et al. Urokinase-type plasminogen activator (uPA) and its inhibitor PAI-I: novel tumor-derived factors with a high prognostic and predictive impact in breast cancer. Thromb Haemost. 2004;91:450–6.

    CAS  PubMed  Google Scholar 

  36. Leissner P, Verjat T, Bachelot T, Paye M, Krause A, Puisieux A, et al. Prognostic significance of urokinase plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in lymph node- and hormone receptor-positive breast cancer. BMC Cancer. 2006;31:216.

    Article  CAS  Google Scholar 

  37. Janicke F, Prechtl A, Thomssen C, Harbeck N, Meisner C, Untch M, et al. Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1. J Natl Cancer Inst. 2001;93(12):913–20.

    Article  CAS  PubMed  Google Scholar 

  38. Trial ID: NCT0122205. Available at: www.clinicaltrials.gov.

  39. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–312.

    Article  CAS  PubMed  Google Scholar 

  40. Cuzick J, Dowsett M, Pineda S, Wale C, Salter J, Quinn E, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol. 2011;29:4273–8.

    Article  PubMed  Google Scholar 

  41. Barton S, Zabaglo L, AʼHern R, Turner N, Ferguson T, O’Neill S, et al. Assessment of the contribution of the IHC4+C score to decision making in clinical practice in early breast cancer. Br J Cancer. 2012;106:1760–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stephen J, Murray G, Cameron DA, Thomas J, Kunkler IH, Thomas J, Kunkler IH, Jack W, et al. Time dependence of biomarkers: non-proportional effects of immunohistochemical panels predicting relapse risk in early breast cancer. Br J Cancer. 2014;11:2242–7.

    Article  Google Scholar 

  43. Ring BZ, Seitz RS, Beck R, Shasteen WJ, Tarr SM, Cheang MC, et al. Novel prognostic immunohistochemical biomarker panel for estrogen receptorpositive breast cancer. J Clin Oncol. 2006;24:3039–47.

    Article  CAS  PubMed  Google Scholar 

  44. Ross DT, Kim CY, Tang G, Bohn OL, Beck RA, Ring BZ, et al. Chemosensitivity and stratification by a five monoclonal antibody immunohistochemistry test in the NSABP B14 and B20 trials. Clin Cancer Res. 2008;14:6602–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;35:2817–26.

    Article  Google Scholar 

  46. Esteban J, Baker J, Cronin M, Liu M-L, Llamas MG, Walker MG, et al. Tumor gene expression and prognosis in breast cancer: multi-gene RT-PCR assay of paraffin-embedded tissue. Prog Proc Am Soc Clin Oncol. 2003;22:850 abstract.

    Google Scholar 

  47. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. Multi-gene RT-PCR assay for predicting recurrence in node negative breast cancer patients – NSABP studies B-20 and B-14. Breast Cancer Res Treat. 2003;82:A16 abstract.

    Google Scholar 

  48. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24:3726–34.

    Article  CAS  PubMed  Google Scholar 

  49. Dowsett M, Cuzick J, Wale C, Forbes J, Mallon EA, Salter J, et al. Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol. 2010;28:1829–34.

    Article  PubMed  Google Scholar 

  50. Tang G, Cuzick J, Costantino JP, Dowsett M, Forbes JF, Crager M, et al. Risk of recurrence and chemotherapy benefit for patients with node-negative, estrogen receptor-positive breast cancer: recurrence score alone and integrated with pathologic and clinical factors. J Clin Oncol. 2011;29:4365e72.

    Google Scholar 

  51. Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 2010;11:55–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Guiterrez MC, Elledge RM, et al. Gene expression profiling predicts therapeutic response to docetaxel (Taxotere(tm)) in breast cancer patients. Lancet. 2003;362:280–7.

    Article  CAS  Google Scholar 

  53. Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, et al. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol. 2004;22:2284–93.

    Article  CAS  PubMed  Google Scholar 

  54. Gianni L, Zambetti M, Clark K, Baker J, Cronin M, Wu J, et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol. 2005;23:7265–77.

    Article  CAS  PubMed  Google Scholar 

  55. Chang JC, Makris A, Gutierrez MC, Hilsenbeck SG, Hackett JR, Jeong J, et al. Gene expression patterns in formalin-fixed, paraffin embedded core biopsies predict docetaxel chemosensitivity in breast cancer patients. Breast Cancer Res Treat. 2008;108:233–40.

    Article  CAS  PubMed  Google Scholar 

  56. Baehner FL, Achacoso N, Maddala T, Shak S, Quesenberry Jr CP, Goldstein LC, Gown AM. Human epidermal growth factor receptor 2 assessment in a case-control study: comparison of fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction performed by central laboratories. J Clin Oncol. 2010;28:4300–6.

    Article  PubMed  Google Scholar 

  57. Paik S, Bryant J, Tan-Chiu E, Romond E, Hiller W, Park K, et al. Real-world performance of HER2 testing—National Surgical Adjuvant Breast and Bowel Project experience. J Natl Cancer Inst. 2002;94:852–4.

    Article  PubMed  Google Scholar 

  58. Dabbs DJ, Klein ME, Mohsin SK, Tubbs RR, Shuai Y, Bhargava R. High falsenegative rate of HER2 quantitative reverse transcription polymerase chain reaction of the OncotypeDX test: an independent quality assurance study. J Clin Oncol. 2011;29:4279–85.

    Article  PubMed  Google Scholar 

  59. Lahr G. RT-PCR from archival single cells is a suitable method to analyze specific gene expression. Lab Invest. 2000;80:1477–9.

    Article  CAS  PubMed  Google Scholar 

  60. Schutze K, Lahr G. Identification of expressed genes by laser-mediated manipulation of single cells. Nat Biotechnol. 1998;16:737–42.

    Article  CAS  PubMed  Google Scholar 

  61. Cronin M, Pho M, Dutta D, Stephans JC, Shak S, Kiefer MC, et al. Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol. 2004;164(1):35e42.

    Article  Google Scholar 

  62. Cobleigh MA, Tabesh B, Bitterman P, Baker J, Cronin M, Liu ML, et al. Tumor gene expression and prognosis in breast cancer patients with 10 or more positive lymph nodes. Clin Cancer Res. 2005;11:8623e31.

    Article  Google Scholar 

  63. Hornberger J, Chien R, Krebs K, Hochheiser L, et al. US insurance programʼs experience with a multigene assay for early-stage breast cancer. J Oncol Pract. 2011;7:e38s–45.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Trial ID:NCT00567190. Available at: www.clinicaltrials.gov.

  65. Tian S, Roepman P, van’t Veer LJ, Bernards R, de Snoo F, Glas AM. Biological functions of the genes in the MammaPrint breast cancer profile reflect the hallmarks of cancer. Biomark Insights. 2010;5:129–38.

    PubMed  PubMed Central  Google Scholar 

  66. van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.

    Article  Google Scholar 

  67. Van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  68. Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst. 2006;98:1183–92.

    Article  CAS  PubMed  Google Scholar 

  69. Bueno-de-Mesquita JM, Linn SC, Keijzer R, Wesseling J, Nuyten DS, van Krimpen C, et al. Validation of 70-gene prognosis signature in node-negative breast cancer. Breast Cancer Res Treat. 2009;117:483–95.

    Article  CAS  PubMed  Google Scholar 

  70. Mook S, Schmidt MK, Viale G, Pruneri G, Eekhout I, Floore A, et al. The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1–3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat. 2009;116:295e302.

    Article  CAS  Google Scholar 

  71. Knauer M, Mook S, Rutgers EJ, Bender RA, Hauptmann M, van de Vijver MJ, et al. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat. 2010;120:655–61.

    Article  CAS  PubMed  Google Scholar 

  72. Drukker CA, Bueno-de-Mesquita JM, Retèl VP, van Harten WH, van Tinteren H, Wesseling J, et al. A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study. Int J Cancer. 2013;133:929–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Straver ME, Glas AM, Hannemann J, Wesseling J, van de Vijver MJ, Rutgers EJ, et al. The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat. 2010;119:551–8.

    Article  PubMed  Google Scholar 

  74. TrialID:NCT00433589. Available at: www.clinicaltrials.gov.

  75. Rutgers E, Piccart-Gebhart MJ, Bogaerts J, Delaloge S, Veer LV, Rubio IT, et al. The EORTC 10041/BIG 03-04 MINDACT trial is feasible: results of the pilot phase. Eur J Cancer. 2011;47:2742–9.

    Article  PubMed  Google Scholar 

  76. Cardoso F, Piccart-Gebhart M, Van’t Veer L, Rutgers E. The MINDACT trial: the first prospective clinical validation of a genomic tool. Mol Oncol. 2007;1:246–51.

    Article  PubMed  Google Scholar 

  77. Glas AM, Floore A, Delahaye LJ, Witteveen AT, Pover RC, Bakx N, et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics. 2006;7:278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Ach RA, Floore A, Curry B, Lazar V, Glas AM, Pover R, et al. Robust interlaboratory reproducibility of a gene expression signature measurement consistent with the needs of a new generation of diagnostic tools. BMC Genomics. 2007;8:148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT, et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A. 1999;96:9212–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, Vickery T, et al. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res. 2010;16:5222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dowsett M, Sestak I, Lopez-Knowles E, Sidhu K, Dunbier AK, Cowens JW, et al. Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31:2783–90.

    Article  PubMed  Google Scholar 

  83. Sestak I, Cuzick J, Dowsett M, Lopez-Knowles E, Filipits M, Dubsky P, et al. Prediction of late distant recurrence after 5 years of endocrine treatment: a combined analysis of patients from the Austrian breast and colorectal cancer study group 8 and arimidex, tamoxifen alone or in combination randomized trials using the PAM50 risk of recurrence score. J Clin Oncol. 2014;55:6894.

    Google Scholar 

  84. Martin M, Prat A, Rodriguez-Lescure A, Caballero R, Ebbert MT, Munarriz B, et al. PAM50 proliferation score as a predictor of weekly paclitaxel benefit in breast cancer. Breast Cancer Res Treat. 2013;138:457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Trial ID NCT01272037. Available at: www.clinicaltrials.gov.

  86. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98:262–72.

    Article  CAS  PubMed  Google Scholar 

  87. Desmedt C, Giobbie-Hurder A, Neven P, Paridaens R, Christiaens MR, Smeets A, et al. The Gene expression Grade Index: a potential predictor of relapse for endocrine-treated breast cancer patients in the BIG 1-98 trial. BMC Med Genomics. 2009;2:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Toussaint J, Sieuwerts AM, Haibe-Kains B, Desmedt C, Rouas G, Harris AL, et al. Improvement of the clinical applicability of the genomic grade index through a qRT-PCR test performed on frozen and formalin-fixed paraffin embedded tissues. BMC Genomics. 2009;10:424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004;5:607–16.

    Article  CAS  PubMed  Google Scholar 

  90. Ma XJ, Hilsenbeck SG, Wang W, Ding L, Sgroi DC, Bender RA, et al. The HOXB13: IL17BR expression index is a prognostic factor in early-stage breast cancer. J Clin Oncol. 2006;24:4611–9.

    Article  CAS  PubMed  Google Scholar 

  91. Jerevall PL, Brommesson S, Strand C, Gruvberger-Saal S, Malmstrom P, Nordenskjold B, et al. Exploring the two-gene ratio in breast cancer e independent roles for HOXB13 and IL17BR in prediction of clinical outcome. Breast Cancer Res Treat. 2008;107:225–34.

    Article  CAS  PubMed  Google Scholar 

  92. Jansen MP, Sieuwerts AM, Look MP, Ritstier K, Meijer-van Gelder ME, van Staveren IL, et al. HOXB13-to-IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer: a retrospective study. J Clin Oncol. 2007;25:662–8.

    Article  CAS  PubMed  Google Scholar 

  93. Filipits M, Rudas M, Jakesz R, Dubsky P, Fitzal F, Singer CF, et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk actors. Clin Cancer Res. 2011;17:6012–20.

    Article  CAS  PubMed  Google Scholar 

  94. Dubsky P, Filipits M, Jakesz R, Rudas M, Singer CF, Greil R, et al. EndoPredict improves the prognostic classification derived from common clinical guidelines in ER-positive, HER2-negative early breast cancer. Ann Oncol. 2013;24:640–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lohrisch C, Paltiel C, Gelmon K, Speers C, Taylor S, Barnett J, et al. Impact on survival of time from definitive surgery to initiation of adjuvant chemotherapy for early-stage breast cancer. J Clin Oncol. 2006;24:4888–94.

    Article  PubMed  Google Scholar 

  96. Gagliato Dde M, Gonzalez-Angulo AM, Lei X, Theriault RL, Giordano SH, Valero V, et al. Clinical impact of delaying initiation of adjuvant chemotherapy in patients with breast cancer. J Clin Oncol. 2014;32:735–44.

    Article  PubMed  CAS  Google Scholar 

  97. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer. Ann Oncol. 2013;24:2206–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cheang MCU, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101:736–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Prat A, Cheang MC, Martin M, Parker JS, Carrasco E, Caballero R, et al. Prognostic significance of progesterone receptor positive tumor cells within immunohistochemically defined luminal A breast cancer. J Clin Oncol. 2013;31:203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nccn guidelines version 2.2015. www.nccn.org.

  101. Muss HB, Berry DA, Cirrincione CT, Parker JS, Carrasco E, Caballero R, et al. Adjuvant chemotherapy in older women with early-stage breast cancer. N Engl J Med. 2009;360:2055–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lyman GH, Dale DC, Wolff DA, Culakova E, Poniewierski MS, Kuderer NM, et al. Acute myeloid leukemia or myelodysplastic syndrome in randomized controlled clinical trials of cancer chemotherapy with granulocyte colony-stimulating factor: a systematic review. J Clin Oncol. 2010;28:2914–24.

    Article  PubMed  Google Scholar 

  103. Muss HB, Berry DA, Cirrincione C, Budman DR, Henderson IC, Citron ML, et al. Toxicity of older and younger patients treated with adjuvant chemotherapy for node-positive breast cancer: the Cancer and Leukemia Group B Experience. J Clin Oncol. 2007;25:3699–704.

    Article  CAS  PubMed  Google Scholar 

  104. Tannock IF, Ahles TA, Ganz PA, Van Dam FS. Cognitive impairment associated with chemotherapy for cancer: report of a workshop. J Clin Oncol. 2004;22:2233–9.

    Article  PubMed  Google Scholar 

  105. Sanoff HK, Deal AM, Krishnamurthy J, Torrice C, Dillon P, Sorrentino J, et al. Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J Natl Cancer Inst. 2014;106:dju057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Trial ID: NCT01564056. Available at: www.clinicaltrials.gov.

  107. Senkus E, Kyriakides S, Penault-Llorca F, Poortmans P, Thompson A, Zackrisson S, on behalf of the ESMO Guidelines Working Group. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;Suppl 6:vi7–23.

    Google Scholar 

  108. Harbeck N, Kates RE, Look MP, Meijer-Van Gelder ME, Klijn JG, Krüger A, et al. Enhanced benefit from adjuvant chemotherapy in breast cancer patients classified high-risk according to urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (n=3424). Cancer Res. 2002;62:4617–22.

    CAS  PubMed  Google Scholar 

  109. Thurman SA, Schnitt SJ, Connolly JL, Gelman R, Silver B, Harris JR, et al. Outcome after breast-conserving therapy for patients with stage I or II mucinous, medullary, or tubular breast carcinoma. Int J Radiat Oncol Biol Phys. 2004;59:152.

    Article  PubMed  Google Scholar 

  110. Alba E, Calvo L, Albanell J, De la Haba JR, Arcusa Lanza A, Chacon JI, et al. Chemotherapy (CT) and hormonal therapy (HT) as neoadjuvant treatment in luminal breast cancer patients: results from the GEICAM/2006-03, a multicenter, randomized, phase-II study. Ann Oncol. 2012;23:3069–74.

    Article  CAS  PubMed  Google Scholar 

  111. Vu-Nishino H, Tavassoli FA, Ahrens WA, Haffty BG. Clinicopathologic features and long-term outcome of patients with medullary breast carcinoma managed with breast-conserving therapy (BCT). Int J Radiat Oncol Biol Phys. 2005;62:1040.

    Article  PubMed  Google Scholar 

  112. Early Breast Cancer Trialists’ Collaborative Group. Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet. 1998;352:930–42.

    Article  Google Scholar 

  113. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Peto R, Davies C, Godwin J, Gray R, Pan HC, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet. 2012;379:432–44.

    Article  CAS  Google Scholar 

  114. Levine M, Pritchard K, Bramwell V, Shepherd LE, Tu D, Paul N, et al. Randomized trial comparing cyclophosphamide, epirubicin, and fluorouracil with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast cancer: update of National Cancer Institute of Canada Clinical Trials Group Trial MA5. J Clin Oncol. 2005;23:5166–70.

    Article  CAS  PubMed  Google Scholar 

  115. French Adjuvant Study Group. Benefit of a high-dose epirubicin regimen in adjuvant chemotherapy for node-positive breast cancer patients with poor prognostic factors: 5-year follow-up results of French Adjuvant Study Group 05 Randomized Trial. J Clin Oncol. 2001;19:602–11.

    Google Scholar 

  116. Piccart MJ, Di Leo A, Beauduin M, Vindevoghel A, Michel J, Focan C, et al. Phase III trial comparing two dose levels of epirubicin combined with cyclophosphamide with cyclophosphamide, methotrexate, and fluorouracil in node-positive breast cancer. J Clin Oncol. 2001;19:3103–10.

    CAS  PubMed  Google Scholar 

  117. Henderson I, Berry D, Demetri G, Cirrincione CT, Goldstein LJ, Martino S, et al. Improved outcomes from adding sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol. 2003;21:976–83.

    Article  CAS  PubMed  Google Scholar 

  118. Mamounas E, Bryant J, Lembersky B, Fehrenbacher L, Sedlacek SM, Fisher B, et al. Paclitaxel after doxorubicin plus cyclophosphamide as adjuvant chemotherapy for node-positive breast cancer: results from NSABP B-28. J Clin Oncol. 2005;23:3686–96.

    Article  CAS  PubMed  Google Scholar 

  119. Buzdar AU, Singletary SE, Valero V, Booser DJ, Ibrahim NK, Rahman Z, et al. Evaluation of paclitaxel in adjuvant chemotherapy for patients with operable breast cancer: preliminary data of a prospective randomized trial. Clin Cancer Res. 2002;8:1073–9.

    CAS  PubMed  Google Scholar 

  120. Martin M, Rodriguez-Lescure A, Ruiz A, Alba E, Calvo L, Ruiz-Borrego M, et al. Randomized phase 3 trial of fluorouracil, epirubicin, and cyclophosphamide alone or followed by paclitaxel for early breast cancer. J Natl Cancer Inst. 2008;100:805–14.

    Article  CAS  PubMed  Google Scholar 

  121. Sparano JA, Wang M, Martino S, Jones V, Perez E, Saphner T, et al. Phase III study of doxorubicin-cyclophosphamide followed by paclitaxel or docetaxel given every 3 weeks or weekly in patients with axillary node positive or high risk node negative breast cancer [abstract]. San Antonio Breast Cancer Symposium. 2005. Abstract 48.

    Google Scholar 

  122. Sparano JA, Wang M, Martino S, Jones V, Perez E, Saphner T, et al. Phase III study of doxorubicin-cyclophosphamide followed by paclitaxel or docetaxel given every 3 weeks or weekly in operable breast cancer: results of Intergroup Trial E1199 [abstract]. J Clin Oncol. 2007;25(Suppl-18):6s Abstract 516.

    Google Scholar 

  123. Sparano J, Wang M, Martino S, Jones V, Perez EA, Saphner T, et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med. 2008;358:1663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Martin M, Pienkowski T, Mackey J, Pawlicki M, Guastalla JP, Weaver C, et al. Adjuvant docetaxel for node-positive breast cancer. N Engl J Med. 2005;352:2302–13.

    Article  CAS  PubMed  Google Scholar 

  125. Mackey JR, Martin M, Pienkowski T, Rolski J, Rolski J, Guastalla JP, et al. Adjuvant docetaxel, doxorubicin and cyclophosphamide in node positive breast cancer: 10-year follow-up of the phase 3 randomised BCIRG 001 trial. Lancet Oncol. 2013;14:72–80.

    Article  CAS  PubMed  Google Scholar 

  126. Swain SM, Jeong J-H, Geyer CE, Costantino JP, Pajon ER, Fehrenbacher L, et al. NSABP B-30: definitive analysis of patient outcome from a randomized trial evaluating different schedules and combinations of adjuvant therapy containing doxorubicin, docetaxel and cyclophosphamide in women with operable, node-positive breast cancer [abstract]. Cancer Res. 2009;69 (Suppl_1):Abstract 75.

    Google Scholar 

  127. Ellis P, Barrett-Lee P, Johnson L, Cameron D, Wardley A, O’Reilly S, et al. Sequential docetaxel as adjuvant chemotherapy for early breast cancer (TACT): an open-label, phase III, randomised controlled trial. Lancet. 2009;373:1681–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. De Laurentiis M, Cancello G, D’Agostino D, Giuliano M, Giordano A, Montagna E, et al. Taxane-based combinations as adjuvant chemotherapy of early breast cancer: a meta-analysis of randomized trials. J Clin Oncol. 2008;26:44–53.

    Article  PubMed  CAS  Google Scholar 

  129. Bria E, Nistico C, Cuppone F, Carlini P, Ciccarese M, Milella M, et al. Benefit of taxanes as adjuvant chemotherapy for early breast cancer: pooled analysis of 15,500 patients. Cancer. 2006;106:2337–44.

    Article  CAS  PubMed  Google Scholar 

  130. Martín M, Seguí MA, Anto´n A, Ruiz A, Ramos M, Adrover E, et al. Adjuvant docetaxel for high-risk, node-negative breast cancer. N Engl J Med. 2010;363:2200–10.

    Article  PubMed  Google Scholar 

  131. Martín M, Ruiz A, Ruiz Borrego M, Barnadas A, González S, Calvo L, et al. Fluorouracil, doxorubicin, and cyclophosphamide (FAC) versus FAC followed by weekly paclitaxel as adjuvant therapy for high-risk, node-negative breast cancer: results from the GEICAM/2003 02 study. J Clin Oncol. 2013;10(31):2593–9.

    Article  CAS  Google Scholar 

  132. Epub Jacquin JP, Jones S, Magné N, Chapelle C, Ellis P, et al. Docetaxel containing adjuvant chemotherapy in patients with early stage breast cancer. Consistency of effect independent of nodal and biomarker status: a meta-analysis of 14 randomized clinical trials. Breast Cancer Res Treat. 2012;134:903–13.

    Article  CAS  Google Scholar 

  133. Fisher B, Brown AM, Dimitrov NV, Poisson R, Redmond C, Margolese RG, et al. Two months of doxorubicin-cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: Results from the National Surgical Adjuvant Breast and Bowel Project B-15. J Clin Oncol. 1990;8:1483–96.

    CAS  PubMed  Google Scholar 

  134. Fisher B, Anderson S, Tan-Chiu E, Wolmark N, Wickerham DL, Fisher ER, et al. Tamoxifen and chemotherapy for axillary node negative, estrogen receptor-negative breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-23. J Clin Oncol. 2001;19:931–42.

    CAS  PubMed  Google Scholar 

  135. Jones SE, Savin MA, Holmes FA, O’Shaughnessy JA, Blum JL, Vukelja S, et al. Phase III trial comparing doxorubicin plus cyclophosphamide with docetaxel plus cyclophosphamide as adjuvant therapy for operable breast cancer. J Clin Oncol. 2006;1(24):5381–7.

    Article  CAS  Google Scholar 

  136. Jones S, Holmes FA, O’Shaughnessy J, Blum JL, Vukelja SJ, McIntyre KJ, et al. Docetaxel with cyclophosphamide is associated with an overall survival benefit compared with doxorubicin and cyclophosphamide: 7-year follow-up of US Oncology Research Trial 9735. J Clin Oncol. 2009;27:1177–83.

    Article  CAS  PubMed  Google Scholar 

  137. Skipper HE. Laboratory models: some historical perspectives. Cancer Treat Rep. 1986;70:3–7.

    CAS  PubMed  Google Scholar 

  138. Norton L, Simon R, Brereton JD, Bogden AE. Predicting the course of Gompertzian growth. Nature. 1976;264:542–5.

    Article  CAS  PubMed  Google Scholar 

  139. Norton L, Simon R. The Norton–Simon hypothesis revisited. Cancer Treat Res. 1986;70:163–9.

    CAS  Google Scholar 

  140. Citron ML, Berry DA, Cirrincione C, Hudis C, Winer EP, Gradishar WJ, et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol. 2003;21:1431–9.

    Article  CAS  PubMed  Google Scholar 

  141. Budd GT, Barlow WE, Moore HC, Hobday TJ, Stewart JA, Isaacs C, et al. SWOG S0221: a phase III trial comparing chemotherapy schedules in high-risk early-stage breast cancer. J Clin Oncol. 2015;33:58–64.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Therasse P, Mauriac L, Welnicka-Jaskiewicz M, Bruning P, Cufer T, Bonnefoi H, et al. Final results of a randomized phase III trial comparing cyclophosphamide, epirubicin, and fluorouracil with dose-intensified epirubicin and cyclophosphamide plus filgrastim in locally advanced breast cancer. An EORTC-NCIC-SAKK multicenter study. J Clin Oncol. 2003;21:843–50.

    Article  CAS  PubMed  Google Scholar 

  143. Fountzilas G, Dafni U, Gogas H, Linardou H, Kalofonos HP, Briasoulis E, et al. Post-operative dose dense sequential chemotherapy with epirubicin, paclitaxel and CMF in patients with high-risk breast cancer: a Hellenic Cooperative Oncology Group Randomized Phase III Trial HE 10 ⁄ 00. Ann Oncol. 2008;19:853–60.

    Article  CAS  PubMed  Google Scholar 

  144. Swain SM, Tang G, Geyer Jr CE, Rastogi P, Atkins JN, Donnellan PP, et al. Definitive results of a phase III adjuvant trial comparing three chemotherapy regimens in women with operable, node-positive breast cancer: The NSABP B-38 trial. J Clin Oncol. 2013;31:3197–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bonilla L, Ben-Aharon I, Vidal L, Gafter-Gvili A, Leibovici L, Stemmer SM, et al. Dose-dense chemotherapy in nonmetastatic breast cancer: a systematic review and meta-analysis of randomized controlled trials. J Natl Cancer Inst. 2010;102:1845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bayraktar S, Arun B. Dose dense chemotherapy for breast cancer. Breast J. 2012;18:261–6.

    Article  CAS  PubMed  Google Scholar 

  147. Joensuu H, Kellokumpu-Lehtinen PL, Huovinen R, Jukkola-Vuorinen A, Tanner M, Asola R, et al. Adjuvant capecitabine in combination with docetaxel and cyclophosphamide plus epirubicin for breast cancer: an open-label, randomised controlled trial. Lancet Oncol. 2009;10:1145–51.

    Article  CAS  PubMed  Google Scholar 

  148. Joensuu H, Kellokumpu-Lehtinen PL, Huovinen R, Jukkola-Vuorinen A, Tanner M, Kokko R, et al. Adjuvant capecitabine, docetaxel, cyclophosphamide, and epirubicin for early breast cancer: final analysis of the randomized FinXX trial. J Clin Oncol. 2012;1(30):11–8.

    Article  CAS  Google Scholar 

  149. O’Shaughnessy J, Paul D, Stokoe C, Pippen JL, Blum JL, Krekow L, et al. First efficacy results of a randomized, open-label, phase II study of adjuvant doxorubicin plus cyclophosphamide, followed by docetaxel with or without capecitabine, in high-risk early breast cancer. 33rd Annual San Antonio Breast Cancer Symposium 2010, San Antonio, 8–12 Dec (abstr S4-2).

    Google Scholar 

  150. Wardley AM, Hiller L, Howard HC, Dunn JA, Bowman A, Coleman RE, et al. tAnGo: a randomised phase III trial of gemcitabine in paclitaxel-containing, epirubicin/cyclophosphamide-based, adjuvant chemotherapy for early breast cancer: a prospective pulmonary, cardiac and hepatic function evaluation. Br J Cancer. 2008;99:597–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol. 2010;220:263–80.

    Article  CAS  PubMed  Google Scholar 

  152. Bertucci F, Finetti P, Cervera N, Esterni B, Hermitte F, Viens P, et al. How basal are triple-negative breast cancers? Int J Cancer. 2008;123:236–40.

    Article  CAS  PubMed  Google Scholar 

  153. Turner N, Tutt A, Ashworth A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer. 2004;4:814–9.

    Article  CAS  PubMed  Google Scholar 

  154. Colleoni M, Cole BF, Viale G, Regan MM, Price KN, Maiorano E, et al. Classical cyclophosphamide, methotrexate, and fluorouracil chemotherapy is more effective in triple-negative, node-negative breast cancer: results from two randomized trials of adjuvant chemoendocrine therapy for node-negative breast cancer. J Clin Oncol. 2010;28:2966–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26:1275–81.

    Article  PubMed  Google Scholar 

  156. Treszezamsky AD, Kachnic LA, Feng Z, Zhang J, Tokadjian C, Powell SN, et al. BRCA1- and BRCA2-deficient cells are sensitive to etoposide-induced DNA double-strand breaks via topoisomerase II. Cancer Res. 2007;67:7078–81.

    Article  CAS  PubMed  Google Scholar 

  157. Quinn JE, Kennedy RD, Mullan PB, Gilmore PM, Carty M, Johnston PG, et al. BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res. 2003;63:6221–8.

    CAS  PubMed  Google Scholar 

  158. Tassone P, Tagliaferri P, Perricelli A, Blotta S, Quaresima B, Martelli ML, et al. BRCA1 expression modulates chemosensitivity of BRCA1-defective HCC1937 human breast cancer cells. Br J Cancer. 2003;88:1285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rocca A, Bravaccini S, Scarpi E, Mangia A, Petroni S, Puccetti M, et al. Benefit from anthracyclines in relation to biological profiles in early breast cancer. Breast Cancer Res Treat. 2014;144:307–18.

    Article  CAS  PubMed  Google Scholar 

  160. Laporte S, Jones S, Chapelle C, Jacquin J, Martín M. Consistency of effect of docetaxel containing adjuvant chemotherapy in patients with early stage breast cancer independent of nodal status: meta-analysis of 12 randomized clinical trials. Cancer Res. 2009;69 (Suppl 1):Abstr 605.

    Google Scholar 

  161. Hayes DF, Thor AD, Dressler LG, Weaver D, Edgerton S, Cowan D, et al. HER2 and response to paclitaxel in node-positive breast cancer. N Engl J Med. 2007;357:1496–506.

    Article  CAS  PubMed  Google Scholar 

  162. Jacquemier J, Penault-Llorca F, Mnif H, Charafe-Jauffret E, Marque S, Martin A, et al. Identification of a basal-like subtype and comparative effect of epirubicin-based chemotherapy and sequential epirubicin followed by docetaxel chemotherapy in the PACS 01 breast cancer trial: 33 markers studied on tissue-microarrays (TMA). J Clin Oncol. 2006;24:18s abstract 509.

    Article  Google Scholar 

  163. Hugh J, Hanson J, Cheang MC, Nielsen TO, Perou CM, Dumontet C, et al. Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol. 2009;27:1168–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Roche H, Allouache D, Romieu G, Bourgeois H, Canon J, Serin D, et al. Five-year analysis of the FNCLCC-PACS04 Trial: FEC100 vs. ED75 for the adjuvant treatment of node positive breast cancer. Cancer Res. 2010;69:24s abstract 60.

    Google Scholar 

  165. Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem. 2000;275:23899–903.

    Article  CAS  PubMed  Google Scholar 

  166. Husain A, He G, Venkatraman ES, Spriggs DR. BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res. 1998;58:1120–3.

    CAS  PubMed  Google Scholar 

  167. Leong CO, Vidnovic N, DeYoung MP, Sgroi D, Ellisen LW. The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest. 2007;117:1370–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Byrski T, Gronwald J, Huzarski T, Grzybowska E, Budryk M, Stawicka M, et al. Response to neo-adjuvant chemotherapy in women with BRCA1-positive breast cancers. Breast Cancer Res Treat. 2009;115:359–63.

    Article  CAS  PubMed  Google Scholar 

  169. Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, et al. Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol. 2010;28:1145–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Muss HB, Berry DA, Cirrincione CT, Theodoulou M, Mauer AM, Kornblith AB, et al. Adjuvant chemotherapy in older women with early-stage breast cancer. N Engl J Med. 2009;360:2055–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Moynahan ME, Chiu JW, Koller BH, Jasin M. BRCA1 controls homology-directed DNA repair. Mol Cell. 1999;4:511–8.

    Article  CAS  PubMed  Google Scholar 

  172. Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology directed repair of chromosomal breaks. Mol Cell. 2001;7:263–72.

    Article  CAS  PubMed  Google Scholar 

  173. Tirkkonen M, Johannsson O, Agnarsson BA, Olsson H, Ingvarsson S, Karhu R, et al. Distinct somatic genetic changes associated with tumor progression in carriers of BRCA1 and BRCA2 germ-line mutations. Cancer Res. 1997;57:1222–7.

    CAS  PubMed  Google Scholar 

  174. Collins N, McManus R, Wooster R, Mangion J, Seal S, Lakhani SR, et al. Consistent loss of the wild type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12-13. Oncogene. 1995;10:1673–5.

    CAS  PubMed  Google Scholar 

  175. Merajver SD, Frank TS, Xu J, Pham TM, Calzone KA, Bennett-Baker P, et al. Germline BRCA1 mutations and loss of the wild-type allele in tumors from families with early onset breast and ovarian cancer. Clin Cancer Res. 1995;1:539–44.

    CAS  PubMed  Google Scholar 

  176. Caldecott W. Mammalian single-strand break repair: mechanisms and links with chromatin. DNA Repair. 2007;6:443–53.

    Article  CAS  PubMed  Google Scholar 

  177. Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008;26:3785–90.

    Article  CAS  PubMed  Google Scholar 

  178. Farmer H, McCabe H, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.

    Article  CAS  PubMed  Google Scholar 

  179. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, et al. Oral poly(ADPribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of concept trial. Lancet. 2010;376:235–44.

    Article  CAS  PubMed  Google Scholar 

  180. Rivera E, Lee J, Davies A. Clinical development of ixabepilone and other epothilones in patients with advanced solid tumors. Oncologist. 2008;13:1207–23.

    Article  CAS  PubMed  Google Scholar 

  181. Baselga J, Zambetti M, Llombart-Cussac A, Manikhas G, Kubista E, Steger GG, et al. Phase II genomics study of ixabepilone as neoadjuvant treatment for breast cancer. J Clin Oncol. 2009;27:526–34.

    Article  CAS  PubMed  Google Scholar 

  182. Fumoleau P, Llombart-Cussac A, Roche H, Pivot X, Martin M, Kubista E, et al. Clinical activity of ixabepilone, a novel epothilone B analog, across the breast cancer disease continuum. Eur J Cancer. 2007; 5(Suppl): Abstract 2119.

    Google Scholar 

  183. Saura C, Tseng LM, Chan S. Phase 2 study of ixabepilone versus paclitaxel as neoadjuvant therapy for early stage breast cancer with comparative biomarker analysis. 33rd Annual San Antonio Breast Cancer Symposium, 2010. San Antonio, Abstract 701.

    Google Scholar 

  184. Rugo HS, Roche H, Thomas ES. Ixabepilone plus capecitabine vs capecitabine in patients with triple negative tumors: a pooled analysis of patients from two large phase III clinical studies. Cancer Res. 2009; 69(Suppl 2):Abstract 3057.

    Google Scholar 

  185. Linderholm BK, Klintman M, Grabau D. Significantly higher expression of vascular endothelial growth factor (VEGF) and shorter survival after recurrences in premenopausal node negative patients with triple negative breast cancer. Cancer Res. 2009;69(2 Suppl 1):1077 abstract.

    Article  Google Scholar 

  186. Ryd´en L, Ferno M, Stal O. Vascular endothelial growth factor receptor 2 is a significant negative prognostic biomarker in triple-negative breast cancer: results from a controlled randomised trial of premenopausal breast cancer. Cancer Res. 2009;69(2 Suppl 1):1087 abstract.

    Article  Google Scholar 

  187. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357:2666–76.

    Article  CAS  PubMed  Google Scholar 

  188. Miles DW, Chan A, Dirix LY, Cortés J, Pivot X, Tomczak P, et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2010;28:3239–47.

    Article  CAS  PubMed  Google Scholar 

  189. Robert NJ, Dieras V, Glaspy J, Brufsky AM, Bondarenko I, Lipatov ON, et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol. 2011;29:1252–60.

    Article  CAS  PubMed  Google Scholar 

  190. Brufsky AM, Hurvitz S, Perez E, Swamy R, Valero V, O’Neill V, et al. RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2011;29:4286–93.

    Article  CAS  PubMed  Google Scholar 

  191. Cameron D, Brown J, Dent R, Jackisch C, Mackey J, Pivot X, et al. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol. 2013;14:933–4.

    Article  CAS  PubMed  Google Scholar 

  192. Bell R, Brown J, Parmar M, Toi S ,Suter T, Steger G, et al. Final efficacy and updated safety results of the randomized phase III BEATRICE trial evaluating adjuvant bevacizumab (BEV)-containing therapy for early triple-negative breast cancer (TNBC). San Antonio Breast Cancer Symposium, 2014, San Antonio [PD2-2].

    Google Scholar 

  193. Slamon DJ, Swain SM, Buyse M. Primary results from BETH, a phase 3 controlled study of adjuvant chemotherapy and trastuzumab ± bevacizumab in patients with HER2-positive, node-positive or high risk node-negative breast cancer. San Antonio Breast Cancer Symposium, 2013, San Antonio, [S1-03].

    Google Scholar 

  194. Miller K, O’Neill AM, Dang CT. Bevacizumab (Bv) in the adjuvant treatment of HER2-negative breast cancer: final results from Eastern Cooperative Oncology Group E5103. J Clin Oncol 32:5s, 2014 (suppl; abstr 500).

    Google Scholar 

  195. Siziopikou KP, Ariga R, Proussaloglou KE, Gattuso P, Cobleigh M. The challenging estrogen receptor-negative/ progesterone receptor-negative/HER-2-negative patient: a promising candidate for epidermal growth factor receptor targeted therapy? Breast J. 2006;12:360–2.

    Article  PubMed  Google Scholar 

  196. Corkery B, Crown J, Clynes M, O’Donovan N. Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann Oncol. 2009;20:862–7.

    Article  CAS  PubMed  Google Scholar 

  197. Carey LA, Rugo HS, Marcom PK. TBCRC 001: EGFR inhibition with cetuximab added to carboplatin in metastatic triple-negative (basal-like) breast cancer. J Clin Oncol. 2008;26:1009 abstract.

    Google Scholar 

  198. O’Shaughnessy J, Weckstein DJ, Vukelja SJ. Preliminary results of a randomized phase II study of weekly irinotecan/carboplatin with or without cetuximab in patients with metastatic breast cancer. Breast Cancer Res Treat. 2007;106(Suppl -1):S32 abstract 308.

    Google Scholar 

  199. Nabholtz J, Weber B, Mouret-Reynier M. Panitumumab in combination with FEC 100 (5-fluorouracil, epidoxorubicin, cyclophosphamide) followed by docetaxel (T) in patients with operable, triple-negative breast cancer (TNBC): preliminary results of a multicenter neoadjuvant pilot phase II study. J Clin Oncol. 2011;29 (suppl):Abstr e11574.

    Google Scholar 

  200. Sasco AJ, Lowenfels AB, Pasker-de JP. Review article: epidemiology of male breast cancer. A meta-analysis of published case-control studies and discussion of selected aetiological factors. Int J Cancer. 1993;53:538–49.

    Article  CAS  PubMed  Google Scholar 

  201. O’Malley CD, Prehn AW, Shema SJ, Glaser SL. Racial/ethnic differences in survival rates in a population-based series of men with breast carcinoma. Cancer. 2002;94:2836–43.

    Article  PubMed  Google Scholar 

  202. Brinton LA. Breast cancer risk among patients with Klinefelter syndrome. Acta Paediatr. 2011;100:814–8.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Mabuchi K, Bross DS, Kessler II. Risk factors for male breast cancer. J Natl Cancer Inst. 1985;74:371–5.

    CAS  PubMed  Google Scholar 

  204. Thomas DB, Jimenez LM, McTiernan A, Rosenblatt K, Stalsberg H, Stemhagen A, et al. Breast cancer in men: risk factors with hormonal implications. Am J Epidemiol. 1992;135:734–48.

    CAS  PubMed  Google Scholar 

  205. Chavez-Macgregor M, Clarke CA, Lichtensztajn D. Male breast cancer according to tumor subtype and race: a population-based study. Cancer. 2013;119:1611–7.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Giordano SH, Cohen DS, Buzdar AU, Perkins G, Hortobagyi GN. Breast carcinoma in men: a population-based study. Cancer. 2004;101:51–7.

    Article  PubMed  Google Scholar 

  207. Bloom KJ, Govil H, Gattuso P, Reddy V, Francescatti D. Status of HER-2 in male and female breast carcinoma. Am J Surg. 2001;182:389–92.

    Article  CAS  PubMed  Google Scholar 

  208. Scott-Conner CE, Jochimsen PR, Menck HR, Winchester DJ. An analysis of male and female breast cancer treatment and survival among demographically identical pairs of patients. Surgery. 1999;126:775–80; discussion 780–781.

    Article  CAS  PubMed  Google Scholar 

  209. Giordano SH. A review of the diagnosis and management of male breast cancer. Oncologist. 2005;10:471–9.

    Article  PubMed  Google Scholar 

  210. Bagley CS, Wesley MN, Young RC, Lippman ME. Adjuvant chemotherapy in males with cancer of the breast. Am J Clin Oncol. 1987;10:55–60.

    Article  CAS  PubMed  Google Scholar 

  211. Yildirim E, Berberoğlu U. Male breast cancer: a 22-year experience. Eur J Surg Oncol. 1998;24:548–52.

    Article  CAS  PubMed  Google Scholar 

  212. Patel 2nd HZ, Buzdar AU, Hortobagyi GN. Role of adjuvant chemotherapy in male breast cancer. Cancer. 1989;64:1583–5.

    Article  PubMed  Google Scholar 

  213. Izquierdo MA, Alonso C, De Andres L, Ojeda B. Male breast cancer. Report of a series of 50 cases. Acta Oncol. 1994;33:767–71.

    Article  CAS  PubMed  Google Scholar 

  214. Giordano SH, Perkins GH, Broglio K, Garcia SG, Middleton LP, Buzdar AU, Hortobagyi GN. Adjuvant systemic therapy for male breast carcinoma. Cancer. 2005;104:2359–64.

    Article  PubMed  Google Scholar 

  215. Smith LH, Danielsen B, Allen ME, Cress R. Cancer associated with obstetric delivery: results of linkage with the California cancer registry. Am J Obstet Gynecol. 2003;189:1128–35.

    Article  PubMed  Google Scholar 

  216. Stensheim H, Møller B, van Dijk T, Fosså SD. Cause-specific survival for women diagnosed with cancer during pregnancy or lactation: a registry-based cohort study. J Clin Oncol. 2009;27:45–51.

    Article  PubMed  Google Scholar 

  217. Parente JT, Amsel M, Lerner R, Chinea F. Breast cancer associated with pregnancy. Obstet Gynecol. 1998;71:861–4.

    Google Scholar 

  218. Tobon H, Horowitz LF. Breast cancer during pregnancy. Breast Dis. 1993;6:127–34.

    Google Scholar 

  219. King RM, Welch JS, Martin JK, Coulam CB. Carcinoma of the breast associated with pregnancy. Surg Gynecol Obstet. 1985;160:228–32.

    CAS  PubMed  Google Scholar 

  220. Shousha S. Breast carcinoma presenting during or shortly after pregnancy and lactation. Arch Pathol Lab Med. 2000;124:1053–60.

    CAS  PubMed  Google Scholar 

  221. Middleton LP, Amin M, Gwyn K, Theriault R, Sahin A. Breast carcinoma in pregnant women: assessment of clinicopathologic and immunohistochemical features. Cancer. 2003;98:1055–60.

    Article  PubMed  Google Scholar 

  222. Ishida T, Yokoe T, Kasumu F, Sakamoto G, Makita M, Tominaga T, et al. Clinicopathologic characteristics and prognosis of breast cancer patients associated with pregnancy and lactation: analysis of case-control study in Japan. Jpn J Cancer Res. 1992;83:1143–9.

    Article  CAS  PubMed  Google Scholar 

  223. Reed W, Hannisdal E, Skovlund E, Thoresen S, Lilleng P, Nesland JM. Pregnancy and breast cancer: a population-based study. Virchows Arch. 2003;443:44–50.

    Article  CAS  PubMed  Google Scholar 

  224. Bonnier P, Romain S, Dilhuydy JM, Bonichon F, Julien JP, Charpin C, et al. Influence of pregnancy on the outcome of breast cancer: a case-control study. Societe Francaise de Senologie et de Pathologie Mammaire Study Group. Int J Cancer. 1997;72:720–7.

    Article  CAS  PubMed  Google Scholar 

  225. Bertheau P, Steinberg SM, Cowan K, Merino MJ. Breast cancer in young women: clinicopathologic correlation. Semin Diagn Pathol. 1999;16:248–56.

    CAS  PubMed  Google Scholar 

  226. Rosen PP, Lesser ML, Kinne DW, Beathie EJ. Breast carcinoma in women 35 years of age or younger. Ann Surg. 1984;199:133–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Elledge RM, Ciocca DR, Langone G, McGuire WL. Estrogen receptor, progesterone receptor, and HER-2/neu protein in breast cancers from pregnant patients. Cancer. 1993;71:2499–506.

    Article  CAS  PubMed  Google Scholar 

  228. Germann N, Goffinet F, Goldwasser F. Anthracyclines during pregnancy: embryo-fetal outcome in 160 patients. Ann Oncol. 2004;15:146–50.

    Article  CAS  PubMed  Google Scholar 

  229. Johnson PH, Gwyn K, Gordon N. The treatment of pregnant women with breast cancer and the outcomes of the children exposed to chemotherapy in utero [abstract]. J Clin Oncol. 2005;23(Suppl 16):Abstract 540.

    Google Scholar 

  230. Marquardt H, Philips FS, Sternberg SS. Tumorigenicity in vivo and induction of malignant transformation and mutagenesis in cell cultures by Adriamycin and Daunomycin. Cancer Res. 1976;36:2065–9.

    CAS  PubMed  Google Scholar 

  231. Pommier Y, Fesen MR, Goldwasser F. Topoisomerase II inhibitors: the epipodophyllotoxins, m-AMSA and the ellipticine derivate. In: Chabner BA, Longo DL, editors. Cancer chemotherapy and biotherapy. 2nd ed. Philadelphia: Lippincott-Raven; 1996. p. 435–61.

    Google Scholar 

  232. Pacifici GM, Nottoli R. Placental transfer of drugs administered to the mother. Clin Pharmacokinet. 1995;28:235–69.

    Article  CAS  PubMed  Google Scholar 

  233. Smit JW, Huisman MT, Van Tellingen O, Wiltshire HR, Schinkel AH. Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure. J Clin Invest. 1999;104:1441–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Stewart DJ, Grewaal D, Green RM, Mikhael N, Goel R, Montpetit VA, et al. Concentrations of doxorubicin and its metabolites in human autopsy heart and other tissues. Anticancer Res. 1993;13:1945–52.

    CAS  PubMed  Google Scholar 

  235. He YL, Seno H, Tsujimoto S, Tashiro C. The effects of uterine and umbilical blood flows on the transfer of propofol across the human placenta during in vitro perfusion. Anesth Analg. 2001;93:151–6.

    Article  CAS  PubMed  Google Scholar 

  236. Hahn KM, Johnson PH, Gordon N, Kuerer H, Middleton L, Ramirez M, et al. Treatment of pregnant breast cancer patients and outcomes of children exposed to chemotherapy in utero. Cancer. 2006;107:1219–26.

    Article  PubMed  Google Scholar 

  237. Turchi JJ, Villasis C. Anthracyclines in the treatment of malignancy in pregnancy. Cancer. 1988;61:435–40.

    Article  CAS  PubMed  Google Scholar 

  238. Zemlickis D, Lishner M, Degendorfer P, Panzarella T, Sutcliffe SB, Koren G. Fetal outcome after in utero exposure to cancer chemotherapy. Arch Intern Med. 1992;152:573–6.

    Article  CAS  PubMed  Google Scholar 

  239. Ring AE, Smith IE, Jones A, Shannon C, Galani E, Ellis PA. Chemotherapy for breast cancer during pregnancy: an 18-year experience from five London teaching hospitals. J Clin Oncol. 2005;23:4192–7.

    Article  PubMed  Google Scholar 

  240. Giacalone PL, Laffargue F, Bénos P. Chemotherapy for breast carcinoma during pregnancy: a French national survey. Cancer. 1999;86:2266–72.

    Article  CAS  PubMed  Google Scholar 

  241. Cardonick E, Iacobucci A. Use of chemotherapy during human pregnancy. Lancet Oncol. 2004;5:283–91.

    Article  CAS  PubMed  Google Scholar 

  242. Zemlickis D, Lishner M, Degendorfer P, Panzarella T, Burke B, Sutcliffe SB, et al. Maternal and fetal outcome after breast cancer in pregnancy. Am J Obstet Gynecol. 1992;166:781–7.

    Article  CAS  PubMed  Google Scholar 

  243. Nettleton J, Long J, Kuban D, Wu R, Shaefffer J, El-Mahdi A. Breast cancer during pregnancy: quantifying the risk of treatment delay. Obstet Gynecol. 1996;87:414–8.

    Article  CAS  PubMed  Google Scholar 

  244. Briggs GG, Freeman RK, Yaffe SJ. Drugs in pregnancy and lactation. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  245. Doll DC, Ringenberg QS, Yarbro JW. Antineoplastic agents and pregnancy. Semin Oncol. 1989;16:337–46.

    CAS  PubMed  Google Scholar 

  246. Zemlickis D, Klein J, Moselhy G, Koren G. Cisplatin protein binding in pregnancy and the neonatal period. Med Pediatr Oncol. 1994;23:476–9.

    Article  CAS  PubMed  Google Scholar 

  247. Mir O, Berveiller P, Goffinet F, Treluyer JM, Serreau R, Goldwasser F, et al. Taxanes for breast cancer during pregnancy: a systematic review. Ann Oncol. 2010;21:425–6.

    Article  CAS  PubMed  Google Scholar 

  248. Garcia-Gonzalez J, Cueva J, Lamas MJ, Curiel T, Graña B, López-López R. Paclitaxel and cisplatin in the treatment of metastatic non-small-cell lung cancer during pregnancy. Clin Transl Oncol. 2008;10:375–6.

    Article  CAS  PubMed  Google Scholar 

  249. Bader AA, Schlembach D, Tamussino KF, Pristauz G, Petru E. Anhydramnios associated with administration of trastuzumab and paclitaxel for metastatic breast cancer during pregnancy. Lancet Oncol. 2007;8:79–81.

    Article  PubMed  Google Scholar 

  250. Amant F, Deckers S, Van Calsteren K, Loibl S, Halaska M, Brepoels L, et al. Breast cancer in pregnancy: recommendations of an international consensus meeting. Eur J Cancer. 2010;46:3158–68.

    Article  PubMed  Google Scholar 

  251. Ferlay J, Héry C, Autier P, Sankaranarayanan R. Global burden of breast cancer. In: Li C, editor. Breast cancer epidemiology. New York: Springer; 2010. p. 1–19.

    Chapter  Google Scholar 

  252. Menna P, Gonzalez Paz O, Chello M, Covino E, Salvatorelli E, Minotti G. Anthracycline cardiotoxicity. Expert Opin Drug Saf. 2012;11:21–36.

    Article  CAS  Google Scholar 

  253. Roca-Alonso L, Pellegrino L, Castellano L, Stebbing J. Breast cancer treatment and adverse cardiac events: what are the molecular mechanisms? Cardiology. 2012;122:253–9.

    Article  CAS  PubMed  Google Scholar 

  254. Meinardi MT, van Veldhuisen DJ, Gietema JA, Dolsma WV, Boomsma F, van den Berg MP, et al. Prospective evaluation of early cardiac damage induced by epirubicin-containing adjuvant chemotherapy and locoregional radiotherapy in breast cancer patients. J Clin Oncol. 2001;19:2746–53.

    CAS  PubMed  Google Scholar 

  255. Maxwell CB, Jenkins AT. Drug-induced heart failure. Am J Health Syst Pharm. 2011;68:1791–804.

    Article  CAS  PubMed  Google Scholar 

  256. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–79.

    Article  CAS  PubMed  Google Scholar 

  257. Darby SC, McGale P, Taylor CW, Peto R. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol. 2005;6:557–65.

    Article  PubMed  Google Scholar 

  258. Little MP, Tawn EJ, Tzoulaki I, Wakeford R, Hildebrandt G, Paris F, et al. Review and meta- analysis of epidemiological associations between low/moderate doses of ionizing radiation and circulatory disease risks, and their possible mechanisms. Radiat Environ Biophys. 2010;49:139–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Schmitz KH, Prosnitz RG, Schwartz AL, Carver JR. Prospective surveillance and management of cardiac toxicity and health in breast cancer survivors. Cancer. 2012;118(Suppl):2270–6.

    Article  PubMed  Google Scholar 

  260. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339:900–5.

    Article  CAS  PubMed  Google Scholar 

  261. Isner JM, Ferrans VJ, Cohen SR, Witkind BG, Virmani R, Gottdiener JS, et al. Clinical and morphologic cardiac findings after anthracycline chemotherapy. Analysis of 64 patients studied at necropsy. Am J Cardiol. 1983;51:1167–74.

    Article  CAS  PubMed  Google Scholar 

  262. Von Hoff DD, Rozencweig M, Layard M, Slavik M, Muggia FM. Daunomycin-induced cardiotoxicity in children and adults. A review of 110 cases. Am J Med. 1977;62:200–8.

    Article  Google Scholar 

  263. Curigliano G, Mayer EL, Burstein HJ, Winer EP, Goldhirsch A. Cardiac toxicity from systemic cancer therapy: a comprehensive review. Prog Cardiovasc Dis. 2010;53:94–104.

    Article  CAS  PubMed  Google Scholar 

  264. Gianni L, Baselga J, Eiermann W, Porta VG, Semiglazov V, Lluch A, et al. Phase III trial evaluating the addition of paclitaxel to doxorubicin followed by cyclophosphamide, methotrexate, and fluorouracil, as adjuvant or primary systemic therapy: European Cooperative Trial in Operable Breast Cancer. J Clin Oncol. 2009;27:2474–81.

    Article  CAS  PubMed  Google Scholar 

  265. Grenier MA, Lipshultz SE. Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol. 1998;25:72–85.

    CAS  PubMed  Google Scholar 

  266. Braverman AC, Antin JH, Plappert MT, Cook EF, Lee RT. Cyclophosphamide cardiotoxicity in bone marrow transplantation: a prospective evaluation of new dosing regimens. J Clin Oncol. 1991;9:1215–23.

    CAS  PubMed  Google Scholar 

  267. Goldberg MA, Antin JH, Guinan EC, Rappeport JM. Cyclophosphamide cardiotoxicity: an analysis of dosing as a risk factor. Blood. 1986;68:1114–8.

    CAS  PubMed  Google Scholar 

  268. Gharib MI, Burnett AK. Chemotherapy-induced cardiotoxicity: current practice and prospects of prophylaxis. Eur J Heart Fail. 2002;4:235–42.

    Article  CAS  PubMed  Google Scholar 

  269. Del Mastro L, Perrone F, Repetto L, Manzione L, Zagonel V, Fratino L, et al. Weekly paclitaxel as firstline chemotherapy in elderly advanced breast cancer patients: a phase II study of the Gruppo Italiano di Oncologia Geriatrica (GIOGer). Ann Oncol. 2005;16:253–8.

    Article  PubMed  Google Scholar 

  270. Bird BR, Swain SM. Cardiac toxicity in breast cancer survivors: review of potential cardiac problems. Clin Cancer Res. 2008;14:14–24.

    Article  CAS  PubMed  Google Scholar 

  271. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?id=17003. Accessed on 23 Aug 2010.

  272. Smith LA, Cornelius VR, Plummer CJ, Levitt G, Verrill M, Canney P, et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer. 2010;10:337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Curran CF, Narang PK, Reynolds RD. Toxicity profile of dexrazoxane (Zinecard, ICRF-187, ADR-529, NSC-169780), a modulator of doxorubicin cardiotoxicity. Cancer Treat Rev. 1991;18:241–52.

    Article  CAS  PubMed  Google Scholar 

  274. Speyer JL, Green MD, Zeleniuch-Jacquotte A, Wernz JC, Rey M, Sanger J, et al. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J Clin Oncol. 1992;10:117–27.

    CAS  PubMed  Google Scholar 

  275. Swain SM, Vici P. The current and future role of dexrazoxane as a cardioprotectant in anthracycline treatment: expert panel review. J Cancer Res Clin Oncol. 2004;130:1–7.

    Article  CAS  PubMed  Google Scholar 

  276. van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2011;(2):CD003917.

    Google Scholar 

  277. Seymour L, Bramwell V, Moran LA. Use of dexrazoxane as a cardioprotectant in patients receiving doxorubicin or epirubicin chemotherapy for the treatment of cancer. The Provincial Systemic Treatment Disease Site Group. Cancer Prev Control. 1999;3:145–59.

    CAS  PubMed  Google Scholar 

  278. Hensley ML, Hagerty KL, Kewalramani T, Green DM, Meropol NJ, Wasserman TH, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol. 2009;27:127–45.

    Article  CAS  PubMed  Google Scholar 

  279. Lee VC, Rhew DC, Dylan M, Badamgarav E, Braunstein GD, Weingarten SR. Meta-analysis: angiotensin-receptor blockers in chronic heart failure and high-risk acute myocardial infarction. Ann Intern Med. 2004;141:693–704.

    Article  CAS  PubMed  Google Scholar 

  280. Schocken DD, Benjamin EJ, Fonarow GC, Krumholz HM, Levy D, Mensah GA, et al. Prevention of heart failure. Circulation. 2008;117:2544–65.

    Article  PubMed  Google Scholar 

  281. Minotti G, Salvatorelli E, Menna P. Pharmacological foundations of cardio-oncology. J Pharmacol Exp Ther. 2010;334:2–8.

    Article  CAS  PubMed  Google Scholar 

  282. Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin- converting enzyme inhibition. Circulation. 2006;114:2474–81.

    Article  CAS  PubMed  Google Scholar 

  283. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline- induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55:213–20.

    Article  CAS  PubMed  Google Scholar 

  284. Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48:2258–62.

    Article  CAS  PubMed  Google Scholar 

  285. Heck SL, Gulati G, Ree AH, Schulz-Menger J, Gravdehaug B, Røsjø H, et al. Rationale and design of the prevention of cardiac dysfunction during an Adjuvant Breast Cancer Therapy (PRADA) Trial. Cardiology. 2012;123:240–7.

    Article  CAS  PubMed  Google Scholar 

  286. Danaei G, Vander Hoorn S, Lopez AD, Murray CJL, Ezzati M, Comparative Risk Assessment collaborating group (Cancers). Causes of cancer in the world: comparative risk assessment on nine behavioral and environmental risk factors. Lancet. 2005;366:1784–93.

    Article  PubMed  Google Scholar 

  287. Modesitt SC, Van Nagell JR. The impact of obesity on the incidence and treatment of gynecologic cancers: a review. Obstet Gynecol Surv. 2005;60:683–92.

    Article  PubMed  Google Scholar 

  288. Protani M, Coory M, Martin JH. Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Res Treat. 2010;123:627–35.

    Article  PubMed  Google Scholar 

  289. Zumoff B, Dasgupta I. Relationship between body weight and the incidence of positive nodes at mastectomy in breast cancer. J Surg Oncol. 1983;2:217–20.

    Article  Google Scholar 

  290. Verreault R, Brisson J, Deschenes L, Naud F. Body weight and prognostic indicators in breast cancer. Am J Epidemiol. 1989;129:260–8.

    CAS  PubMed  Google Scholar 

  291. Barpe DR, Rosa DD, Froehlich PE. Pharmacokinetic evaluation of doxorubicin plasma levels in normal and overweight patients with breast cancer and simulation of dose adjustment by different indexes of body mass. Eur J Pharm Sci. 2010;41:458–63.

    Article  CAS  PubMed  Google Scholar 

  292. Gusella M, Toso S, Ferrazzi E, Ferrari M, Padrini R. Relationships between body composition parameters and fluorouracil pharmacokinetics. Br J Clin Pharmacol. 2002;54:131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Dignam JJ, Wieand K, Johnson KA, Raich P, Anderson SJ, Somkin C, et al. Effects of obesity and race on prognosis in lymph node-negative, estrogen receptor negative breast cancer. Breast Cancer Res Treat. 2006;97:245–54.

    Article  PubMed  Google Scholar 

  294. Dignam JJ, Wieand K, Johnson KA, Fisher B, Xu L, Mamounas EP. Obesity, tamoxifen use, and outcomes in women with estrogen receptor-positive early-stage breast cancer. J Natl Cancer Inst. 2003;95:1467–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Sparano JA, Wang M, Zhao F, Stearns V, Martino S, Ligibel JA, et al. Obesity at diagnosis is associated with inferior outcomes in hormone receptor-positive operable breast cancer. Cancer. 2012;118:5937–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Sestak I, Distler W, Forbes JF, Dowsett M, Howell A, Cuzick J. Effect of body mass index on recurrences in tamoxifen and anastrozole treated women: an exploratory analysis from the ATAC trial. J Clin Oncol. 2010;28:3411–5.

    Article  CAS  PubMed  Google Scholar 

  297. Cheymol G. Effects of obesity on pharmacokinetics implications for drug therapy. Clin Pharmacokinet. 2000;39:215–31.

    Article  CAS  PubMed  Google Scholar 

  298. Bonadonna G, Valagussa P. Dose-response effect of adjuvant chemotherapy in breast cancer. N Engl J Med. 1981;304:10–5.

    Article  CAS  PubMed  Google Scholar 

  299. Wood WC, Budman DR, Korzun AH, Cooper MR, Younger J, Hart RD, et al. Dose and dose intensity of adjuvant chemotherapy for stage-II, node-positive breast-carcinoma. N Engl J Med. 1994;330:1253–9.

    Article  CAS  PubMed  Google Scholar 

  300. Carroll J, Protani M, Walpole E, Martin JH. Effect of obesity on toxicity in women treated with adjuvant chemotherapy for early-stage breast cancer: a systematic review. Breast Cancer Res Treat. 2012;136:323–30.

    Article  CAS  PubMed  Google Scholar 

  301. Griggs JJ, Sorbero ME, Lyman GH. Undertreatment of obese women receiving breast cancer chemotherapy. Arch Intern Med. 2005;165:1267–73.

    Article  PubMed  Google Scholar 

  302. Saarto T, Blomqvist C, Rissanen P, Auvinen A, Elomaa I. Haematological toxicity: a marker of adjuvant chemotherapy efficacy in stage II and III breast cancer. Br J Cancer. 1997;75:301–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Lopes-Serrao MD, Ussery SM, Hall 2nd RG, Shah SR. Evaluation of chemotherapy-induced severe myelosuppression incidence in obese patients with capped dosing. J Oncol Pract. 2011;7:13–7.

    Article  PubMed  PubMed Central  Google Scholar 

  304. Griggs JJ, Mangu PB, Anderson H, Balaban EP, Dignam JJ, Hryniuk WM, American Society of Clinical Oncology, et al. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2012;30:1553–61.

    Article  PubMed  Google Scholar 

  305. Smith TJ, Desch CE. Neutropenia-wise and pound-foolish: safe and effective chemotherapy in massively obese patients. South Med J. 1991;84:883–5.

    Article  CAS  PubMed  Google Scholar 

  306. Madarnas Y, Sawka CA, Franssen E, Bjarnason GA. Are medical oncologists biased in their treatment of the large woman with breast cancer? Breast Cancer Res Treat. 2001;66:123–33.

    Article  CAS  PubMed  Google Scholar 

  307. Wright JD, Tian C, Mutch DG, Herzog TJ, Nagao S, Fujiwara K, et al. Carboplatin dosing in obese women with ovarian cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 2008;109:353–8.

    Article  CAS  PubMed  Google Scholar 

  308. Abdah-Bortnyak R, Tsalic M, Haim N. Actual body weight for determining doses of chemotherapy in obese cancer patients: evaluation of treatment tolerability. Med Oncol. 2003;20:363–8.

    Article  CAS  PubMed  Google Scholar 

  309. Rosner GL, Hargis JB, Hollis DR, Budman DR, Weiss RB, Henderson IC, et al. Relationship between toxicity and obesity in women receiving adjuvant chemotherapy for breast cancer: results from Cancer and Leukemia Group B study 8541. J Clin Oncol. 1996;14:3000–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Aydiner MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kilic, L., Aydiner, A. (2016). Adjuvant Systemic Chemotherapy for HER2-Negative Disease. In: Aydiner, A., İgci, A., Soran, A. (eds) Breast Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-26012-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26012-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26010-5

  • Online ISBN: 978-3-319-26012-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics