Skip to main content

Beneficial Impact of Cod Protein, l-Arginine, and Other Amino Acids on Insulin Sensitivity

  • Chapter
  • First Online:

Part of the book series: Nutrition and Health ((NH))

Abstract

With the increasing rates of obesity, the prevalence of insulin resistance and its related diseases is likely to increase significantly in the coming years. It is therefore essential to find effective strategies to slow or prevent the progression of insulin resistance. Many intervention studies have shown that early intervention to improve insulin resistance successfully prevents progression to type 2 diabetes (T2D) (Crandall et al., Nat Clin Pract Endocrinol Metab 4:382–393, 2008). The composition of the diet is undoubtedly very important. While our understanding of the effects of fat and carbohydrates on glucose metabolism and insulin sensitivity has greatly increased over the past decades, the role of proteins and the mechanisms behind their effects are less well characterized. However, studies aiming to demystify their potential effects have shown promising results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Crandall JP, Knowler WC, Kahn SE, et al. The prevention of type 2 diabetes. Nat Clin Pract Endocrinol Metab. 2008;4:382–93.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pot GK, Geelen A, Majsak-Newman G, et al. Increased consumption of fatty and lean fish reduces serum C-reactive protein concentrations but not inflammation markers in feces and in colonic biopsies. J Nutr. 2010;140:371–6.

    Article  CAS  PubMed  Google Scholar 

  3. Ouellet V, Marois J, Weisnagel SJ, Jacques H. Dietary cod protein improves insulin sensitivity in insulin-resistant men and women: a randomized controlled trial. Diabetes Care. 2007;30:2816–21.

    Article  CAS  PubMed  Google Scholar 

  4. Ouellet V, Weisnagel SJ, Marois J, et al. Dietary cod protein reduces plasma C-reactive protein in insulin-resistant men and women. J Nutr. 2008;138:2386–91.

    Article  CAS  PubMed  Google Scholar 

  5. Vikoren LA, Nygard OK, Lied E, Rostrup E, Gudbrandsen OA. A randomised study on the effects of fish protein supplement on glucose tolerance, lipids and body composition in overweight adults. Br J Nutr. 2012;31:1–10.

    Google Scholar 

  6. Gunnarsdottir I, Tomasson H, Kiely M, et al. Inclusion of fish or fish oil in weight-loss diets for young adults: effects on blood lipids. Int J Obes (Lond). 2008;32:1105–12.

    Article  CAS  Google Scholar 

  7. Ramel A, Martinez JA, Kiely M, Bandarra NM, Thorsdottir I. Effects of weight loss and seafood consumption on inflammation parameters in young, overweight and obese European men and women during 8 weeks of energy restriction. Eur J Clin Nutr. 2010;64:987–93.

    Article  CAS  PubMed  Google Scholar 

  8. Mouratoff GJ, Carroll NV, Scott EM. Diabetes mellitus in Athabaskan Indians in Alaska. Diabetes. 1969;18:29–32.

    Article  CAS  PubMed  Google Scholar 

  9. Kromann N, Green A. Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950–1974. Acta Med Scand. 1980;208:401–6.

    Article  CAS  PubMed  Google Scholar 

  10. Bang HO, Dyerberg J, Sinclair HM. The composition of the Eskimo food in north western Greenland. Am J Clin Nutr. 1980;33:2657–61.

    CAS  PubMed  Google Scholar 

  11. Feskens EJ, Bowles CH, Kromhout D. Inverse association between fish intake and risk of glucose intolerance in normoglycemic elderly men and women. Diabetes Care. 1991;14:935–41.

    Article  CAS  PubMed  Google Scholar 

  12. Feskens EJ, Virtanen SM, Rasanen L, et al. Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care. 1995;18:1104–12.

    Article  CAS  PubMed  Google Scholar 

  13. Hartweg J, Perera R, Montori V, Dinneen S, Neil HA, Farmer A. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2008;23:CD003205.

    Google Scholar 

  14. Zhang M, Picard-Deland E, Marette A. Fish and marine omega-3 polyunsaturated fatty acid consumption and incidence of type 2 diabetes: a systematic review and meta-analysis. Int J Endocrinol. 2013;2013:501015.

    PubMed  PubMed Central  Google Scholar 

  15. Hurley C, Galibois I, Jacques H. Fasting and postprandial lipid and glucose metabolisms are modulated by dietary proteins and carbohydrates: role of plasma insulin concentrations. J Nutr Biochem. 1995;6:540–6.

    Article  CAS  Google Scholar 

  16. Lavigne C, Marette A, Jacques H. Cod and soy proteins compared with casein improve glucose tolerance and insulin sensitivity in rats. Am J Physiol Endocrinol Metab. 2000;278:E491–500.

    CAS  PubMed  Google Scholar 

  17. Lavigne C, Tremblay F, Asselin G, Jacques H, Marette A. Prevention of skeletal muscle insulin resistance by dietary cod protein in high fat-fed rats. Am J Physiol Endocrinol Metab. 2001;281:E62–71.

    CAS  PubMed  Google Scholar 

  18. Tremblay F, Lavigne C, Jacques H, Marette A. Dietary cod protein restores insulin-induced activation of phosphatidylinositol 3-kinase/Akt and GLUT4 translocation to the T-tubules in skeletal muscle of high-fat-fed obese rats. Diabetes. 2003;52:29–37.

    Article  CAS  PubMed  Google Scholar 

  19. Soucy J, Leblanc J. The effects of a beef and fish meal on plasma amino acids, insulin and glucagon levels. Nutr Res. 1999;19:17–24.

    Article  CAS  Google Scholar 

  20. Talbot E, Weisnagel SJ, Marois J, Jacques H. Impact of cod protein on insulin sensitivity in women with polycystic ovary syndrome. Can J Diabetes. 2013;37:62.

    Article  Google Scholar 

  21. Lillioja S, Young AA, Culter CL, et al. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J Clin Invest. 1987;80:415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gascon A, Jacques H, Moorjani S, Deshaies Y, Brun LD, Julien P. Plasma lipoprotein profile and lipolytic activities in response to the substitution of lean white fish for other animal protein sources in premenopausal women. Am J Clin Nutr. 1996;63:315–21.

    CAS  PubMed  Google Scholar 

  23. Jacques H, Noreau L, Moorjani S. Effects on plasma lipoproteins and endogenous sex hormones of substituting lean white fish for other animal-protein sources in diets of postmenopausal women. Am J Clin Nutr. 1992;55:896–901.

    CAS  PubMed  Google Scholar 

  24. Lacaille B, Julien P, Deshaies Y, Lavigne C, Brun LD, Jacques H. Responses of plasma lipoproteins and sex hormones to the consumption of lean fish incorporated in a prudent-type diet in normolipidemic men. J Am Coll Nutr. 2000;19:745–53.

    Article  CAS  PubMed  Google Scholar 

  25. Beauchesne-Rondeau E, Gascon A, Bergeron J, Jacques H. Plasma lipids and lipoproteins in hypercholesterolemic men fed a lipid-lowering diet containing lean beef, lean fish, or poultry. Am J Clin Nutr. 2003;77:587–93.

    CAS  PubMed  Google Scholar 

  26. Demonty I, Deshaies Y, Lamarche B, Jacques H. Cod protein lowers the hepatic triglyceride secretion rate in rats. J Nutr. 2003;133:1398–402.

    CAS  PubMed  Google Scholar 

  27. Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis. 2006;189:19–30.

    Article  CAS  PubMed  Google Scholar 

  28. Bergeron N, Deshaies Y, Lavigne C, Jacques H. Interaction between dietary proteins and lipids in the regulation of serum and liver lipids in the rabbit. Effect of fish protein. Lipids. 1991;26:759–64.

    Article  CAS  PubMed  Google Scholar 

  29. Zampelas A, Panagiotakos DB, Pitsavos C, et al. Fish consumption among healthy adults is associated with decreased levels of inflammatory markers related to cardiovascular disease: the ATTICA study. J Am Coll Cardiol. 2005;46:120–4.

    Article  CAS  PubMed  Google Scholar 

  30. Nakamura Y, Ueno Y, Tamaki S, et al. Fish consumption and early atherosclerosis in middle-aged men. Metabolism. 2007;56:1060–4.

    Article  CAS  PubMed  Google Scholar 

  31. Lopez-Garcia E, Schulze MB, Manson JE, et al. Consumption of (n-3) fatty acids is related to plasma biomarkers of inflammation and endothelial activation in women. J Nutr. 2004;134:1806–11.

    CAS  PubMed  Google Scholar 

  32. Robinson LE, Mazurak VC. N-3 polyunsaturated fatty acids: relationship to inflammation in healthy adults and adults exhibiting features of metabolic syndrome. Lipids. 2013;48:319–32.

    Article  CAS  PubMed  Google Scholar 

  33. Pilon G, Ruzzin J, Rioux LE, et al. Differential effects of various fish proteins in altering body weight, adiposity, inflammatory status, and insulin sensitivity in high-fat-fed rats. Metabolism. 2011;60:1122–30.

    Article  CAS  PubMed  Google Scholar 

  34. Madani Z, Louchami K, Sener A, Malaisse WJ, Ait Yahia D. Dietary sardine protein lowers insulin resistance, leptin and TNF-alpha and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome. Int J Mol Med. 2012;29:311–8.

    CAS  PubMed  Google Scholar 

  35. Rudkowska I, Marcotte B, Pilon G, Lavigne C, Marette A, Vohl MC. Fish nutrients decrease expression levels of tumor necrosis factor-alpha in cultured human macrophages. Physiol Genomics. 2010;40:189–94.

    Article  CAS  PubMed  Google Scholar 

  36. Monti LD, Setola E, Lucotti PC, et al. Effect of a long-term oral l-arginine supplementation on glucose metabolism: a randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2012;14:893–900.

    Article  CAS  PubMed  Google Scholar 

  37. Piatti PM, Monti LD, Valsecchi G, et al. Long-term oral l-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care. 2001;24:875–80.

    Article  CAS  PubMed  Google Scholar 

  38. Lucotti P, Setola E, Monti LD, et al. Beneficial effects of a long-term oral l-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients. Am J Physiol Endocrinol Metab. 2006;291:E906–12.

    Article  CAS  PubMed  Google Scholar 

  39. Lucotti P, Monti L, Setola E, et al. Oral l-arginine supplementation improves endothelial function and ameliorates insulin sensitivity and inflammation in cardiopathic nondiabetic patients after an aortocoronary bypass. Metabolism. 2009;58:1270–6.

    Article  CAS  PubMed  Google Scholar 

  40. Ito T, Schaffer SW, Azuma J. The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids. 2012;42:1529–39.

    Article  CAS  PubMed  Google Scholar 

  41. Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15:606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu J, Xie G, Jia W. Insulin resistance and the metabolism of branched-chain amino acids. Front Med. 2013;7:53–9.

    Article  PubMed  Google Scholar 

  43. Wells BJ, Mainous 3rd AG, Everett CJ. Association between dietary l-arginine and C-reactive protein. Nutrition. 2005;21:125–30.

    Article  CAS  PubMed  Google Scholar 

  44. Blum A, Porat R, Rosenschein U, et al. Clinical and inflammatory effects of dietary l-arginine in patients with intractable angina pectoris. Am J Cardiol. 1999;83:1488–90.

    Article  CAS  PubMed  Google Scholar 

  45. Blum A, Hathaway L, Mincemoyer R, et al. Effects of oral l-arginine on endothelium-dependent vasodilation and markers of inflammation in healthy postmenopausal women. J Am Coll Cardiol. 2000;35:271–6.

    Article  CAS  PubMed  Google Scholar 

  46. West SG, Likos-Krick A, Brown P, Mariotti F. Oral l-arginine improves hemodynamic responses to stress and reduces plasma homocysteine in hypercholesterolemic men. J Nutr. 2005;135:212–7.

    CAS  PubMed  Google Scholar 

  47. Bogdanski P, Suliburska J, Grabanska K, et al. Effect of 3-month l-arginine supplementation on insulin resistance and tumor necrosis factor activity in patients with visceral obesity. Eur Rev Med Pharmacol Sci. 2012;16:816–23.

    CAS  PubMed  Google Scholar 

  48. Rosa FT, Freitas EC, Deminice R, Jordao AA, Marchini JS. Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind, placebo-controlled study. Eur J Nutr. 2014;53:823–30.

    Article  CAS  PubMed  Google Scholar 

  49. Schuller-Levis GB, Park E. Taurine: new implications for an old amino acid. FEMS Microbiol Lett. 2003;226:195–202.

    Article  CAS  PubMed  Google Scholar 

  50. Dort J, Leblanc N, Maltais-Giguere J, Liaset B, Cote CH, Jacques H. Beneficial effects of cod protein on inflammatory cell accumulation in rat skeletal muscle after injury are driven by its high levels of l-arginine, glycine, taurine and lysine. PLoS One. 2013;8:e77274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Popov D, Costache G, Georgescu A, Enache M. Beneficial effects of l-arginine supplementation in experimental hyperlipemia-hyperglycemia in the hamster. Cell Tissue Res. 2002;308:109–20.

    Article  CAS  PubMed  Google Scholar 

  52. Kawano T, Nomura M, Nisikado A, Nakaya Y, Ito S. Supplementation of l-arginine improves hypertension and lipid metabolism but not insulin resistance in diabetic rats. Life Sci. 2003;73:3017–26.

    Article  CAS  PubMed  Google Scholar 

  53. Miguez I, Marino G, Rodriguez B, Taboada C. Effects of dietary l-arginine supplementation on serum lipids and intestinal enzyme activities in diabetic rats. J Physiol Biochem. 2004;60:31–7.

    Article  CAS  PubMed  Google Scholar 

  54. Sugano M, Ishiwaki N, Nakashima K. Dietary protein-dependent modification of serum cholesterol level in rats. Significance of the l-arginine/lysine ratio. Ann Nutr Metab. 1984;28:192–9.

    Article  CAS  PubMed  Google Scholar 

  55. Gudbrandsen OA, Wergedahl H, Liaset B, Espe M, Berge RK. Dietary proteins with high isoflavone content or low methionine-glycine and lysine-l-arginine ratios are hypocholesterolaemic and lower the plasma homocysteine level in male Zucker fa/fa rats. Br J Nutr. 2005;94:321–30.

    Article  CAS  PubMed  Google Scholar 

  56. Blum A, Cannon 3rd RO, Costello R, Schenke WH, Csako G. Endocrine and lipid effects of oral l-arginine treatment in healthy postmenopausal women. J Lab Clin Med. 2000;135:231–7.

    Article  CAS  PubMed  Google Scholar 

  57. Schulze F, Glos S, Petruschka D, et al. l-Arginine enhances the triglyceride-lowering effect of simvastatin in patients with elevated plasma triglycerides. Nutr Res. 2009;29:291–7.

    Article  CAS  PubMed  Google Scholar 

  58. Mizushima S, Moriguchi EH, Ishikawa P, et al. Fish intake and cardiovascular risk among middle-aged Japanese in Japan and Brazil. J Cardiovasc Risk. 1997;4:191–9.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang M, Bi LF, Fang JH, et al. Beneficial effects of taurine on serum lipids in overweight or obese non-diabetic subjects. Amino Acids. 2004;26:267–71.

    CAS  PubMed  Google Scholar 

  60. Mizushima S, Nara Y, Sawamura M, Yamori Y. Effects of oral taurine supplementation on lipids and sympathetic nerve tone. Adv Exp Med Biol. 1996;403:615–22.

    Article  CAS  PubMed  Google Scholar 

  61. Yamori Y, Taguchi T, Hamada A, Kunimasa K, Mori H, Mori M. Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci. 2010;17 Suppl 1:S6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Jacques PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ouellet, V. et al. (2017). Beneficial Impact of Cod Protein, l-Arginine, and Other Amino Acids on Insulin Sensitivity. In: Patel, V., Preedy, V., Rajendram, R. (eds) L-Arginine in Clinical Nutrition. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-26009-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26009-9_34

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-26007-5

  • Online ISBN: 978-3-319-26009-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics