Skip to main content

Mucosal Protection by l-Arginine in the Upper Gastrointestinal Tract

  • Chapter
  • First Online:
L-Arginine in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

  • 1367 Accesses

Abstract

Arginine, a conditionally nonessential amino acid, is synthesized from citrulline by the sequential action of the cytosolic enzymes argininosuccinate synthetase and argininosuccinate lyase in the body and does not need to be obtained directly through the diet. However, since this biosynthetic pathway does not produce sufficient amounts of arginine, some needs to be consumed through the diet. This amino acid plays an important role in cell division, the healing of wounds, removal of ammonia from the body, immune function, and the regulation of cardiovascular aspects (Masumoto et al., Nutrition 27:1141–1145, 2011; Zhu et al., Innate Immun 19:242–252, 2013; Lorin et al., Mol Nutr Food Res 58:101–116, 2014). In addition, arginine is the precursor of nitric oxide (NO), which is synthesized from this amino acid by NO synthase, an enzyme involved in the modulation of various biological actions mainly through the activation of guanylyl cyclase under physiological conditions (Whittle, Physiology of the Gastrointestinal Tract, 1994). Several studies (Okabe et al., Arzneimittel-Forschung 26:534–537, 1997; Takeuchi et al., Jpn J Pharmacol 61:13–21, 1993; Tanaka et al., J Physiol Pharmacol 50:405–417, 1999; Ohno et al., J Pharmacol Exp Ther 310:821–827, 2004; Nagahama et al., Dig Dis Sci 51:303–309, 2006; Nagahama et al., Med Sci Monit 18:BR9–BR15, 2012) demonstrated that arginine exhibited protective effects against various lesion models in the gastrointestinal tract, including the esophagus. Although the mechanisms responsible have yet to be elucidated, the protective effects were reportedly related to processes dependent on or independent of NO (Tanaka et al., J Physiol Pharmacol 50:405–417, 1999; Ohno et al., J Pharmacol Exp Ther 310:821–827, 2004; Nagahama et al., Dig Dis Sci 51:303–309, 2006; Nagahama et al., Med Sci Monit 18:BR9–BR15, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masumoto K, Nagata K, Oka Y, Kai H, et al. Successful treatment of an infected wound in infants by a combination of negative pressure wound therapy and l-arginine supplementation. Nutrition. 2011;27:1141–5.

    Article  CAS  PubMed  Google Scholar 

  2. Zhu HL, Liu YL, Xie XL, et al. Effect of l-arginine on intestinal mucosal immune barrier function in weaned pigs after Escherichia coli LPS challenge. Innate Immun. 2013;19:242–52.

    Article  CAS  PubMed  Google Scholar 

  3. Lorin J, Zeller M, Guilland JC, et al. l-Arginine and nitric oxide synthase: regulatory mechanisms and cardiovascular aspects. Mol Nutr Food Res. 2014;58:101–16.

    Article  CAS  PubMed  Google Scholar 

  4. Whittle BJR. Nitric oxide in gastrointestinal physiology and pathology. In: Johnson LR, editor. Physiology of the gastrointestinal tract. 3rd ed. New York: Raven; 1994. p. 267–94.

    Google Scholar 

  5. Okabe S, Takeuchi K, Honda K, et al. Effects of various amino acids on gastric lesions induced by acetylsalicylic acid and gastric secretion in pylorus-ligated rats. Arzneimittelforschung. 1997;26:534–7.

    Google Scholar 

  6. Takeuchi K, Ohuchi T, Kato S, et al. Cytoprotective action of l-arginine against HCl-induced gastric injury in rats: involvement of nitric oxide? Jpn J Pharmacol. 1993;61:13–21.

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka A, Kunikata T, Konaka A, et al. Dual action of nitric oxide in pathogenesis of indomethacin-induced small intestinal ulceration in rats. J Physiol Pharmacol. 1999;50:405–17.

    CAS  PubMed  Google Scholar 

  8. Ohno R, Yokota A, Tanaka A, et al. Induction of small intestinal damage in rats following combined treatment with cyclooxygenase-2 and nitric oxide synthase inhibitors. J Pharmacol Exp Ther. 2004;310:821–7.

    Article  CAS  PubMed  Google Scholar 

  9. Nagahama K, Yamato M, Nishio H, et al. Essential role of pepsin in pathogenesis of acid reflux esophagitis in rats. Dig Dis Sci. 2006;51:303–9.

    Article  CAS  PubMed  Google Scholar 

  10. Nagahama K, Nishio H, Yamato M, et al. Orally administered l-arginine and glycine are highly effective against acid reflux esophagitis in rats. Med Sci Monit. 2012;18:BR9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Orlando RC. Pathogenesis of reflux esophagitis and Barrett’s esophagus. Med Clin North Am. 2005;89:219–41.

    Article  PubMed  Google Scholar 

  12. Hunt RH. Importance of pH control in the management of GERD. Arch Intern Med. 1999;159:649–57.

    Article  CAS  PubMed  Google Scholar 

  13. Bell NJ, Burget D, Howden CW, et al. Appropriate acid suppression for the management of gastro-oesophageal reflux disease. Digestion. 1992;51 Suppl 1:59–67.

    PubMed  Google Scholar 

  14. Hamamoto N, Hashimoto T, Adachi K, et al. Comparative study of nizatidine and famotidine for maintenance therapy of erosive esophagitis. J Gastroenterol Hepatol. 2005;20:281–6.

    Article  CAS  PubMed  Google Scholar 

  15. Nagahama K, Yamato M, Kato S, et al. Protective effect of lafutidine, a novel H2 receptor antagonist on acid reflux esophagitis in rats through capsaicin-sensitive afferent neurons. J Pharmacol Sci. 2003;93:55–61.

    Article  CAS  PubMed  Google Scholar 

  16. Inatomi N, Nagaya H, Takami K, et al. Effects of a proton pump inhibitor, AG-1749 (lansoprazole), on reflux esophagitis and experimental ulcers in rats. Jpn J Pharmacol. 1991;55:437–51.

    Article  CAS  PubMed  Google Scholar 

  17. Takeuchi K, Nagahama K. Animal model of acid-reflux esophagitis: pathogenic roles of acid/pepsin, prostaglandins, and amino acids. BioMed Res Int. 2014;2014:1–10.

    Article  Google Scholar 

  18. Umezawa H, Aoyagi T, Morishima H, et al. Pepstatin, a new pepsin inhibitor produced by actinomycetes. J Antibiot. 1970;23:259–62.

    Article  CAS  PubMed  Google Scholar 

  19. Kunimoto S, Aoyagi T, Morishima H, et al. Mechanism of inhibition of pepsin by pepstatin. J Antibiot. 1972;25:251–5.

    Article  CAS  PubMed  Google Scholar 

  20. Souza RF, Huo X, Mittal V, et al. Gastroesophageal reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology 2009; 137: 1776–84.

    Google Scholar 

  21. De Backer A, Haentjens P, Willems G. Hydrochloric acid: a trigger of cell proliferation in the esophagus of dogs. Dig Dis Sci. 1994;9:884–90.

    Google Scholar 

  22. Hollwarth ME, Smith ME, Kvietys RP, et al. Esophageal blood flow in the cat: normal distribution and effects of acid perfusion. Gastroenterology. 1986;90:622–8.

    Article  CAS  PubMed  Google Scholar 

  23. Yamato M, Nagahama K, Kotani T, et al. Biphasic effect of prostaglandin E2 on a rat model of esophagitis mediated by EP1 receptors: relation to pepsin secretion. Digestion. 2005;72:109–18.

    Article  CAS  PubMed  Google Scholar 

  24. Takeuchi K, Kato S, Amagase K. Prostaglandin EP receptors involved in modulating gastrointestinal mucosal integrity. J Pharmacol Sci. 2010;114:248–61.

    Article  CAS  PubMed  Google Scholar 

  25. Lanas AI, Blas JM, Ortego J, et al. Adaptation of esophageal mucosa to acid- and pepsin-induced damage: role of nitric oxide and epidermal growth factor. Dig Dis Sci. 1997;42:1003–12.

    Article  CAS  PubMed  Google Scholar 

  26. Konturek PC, Brozowska I, Targosz A, et al. Esophagoprotection mediated by esogenous and endogenous melatonin in an experimental model of reflux esophagitis. J Pineal Res 2013; 55: 46-57..

    Google Scholar 

  27. Ishiyama F, Iijima K, Asanuma K, et al. Exogenous luminal nitric oxide exacerbates esophagus tissue damage in a reflux esophagitis model of rats. Scand J Gastroenterol. 2009;44:527–37.

    Article  CAS  PubMed  Google Scholar 

  28. Ito Y, Okuda S, Ohkawa F, et al. Dual role of nitric oxide in gastric hypersecretion in distended stomach: inhibition of acid secretion and stimulation of pepsin secretion. Life Sci. 2008;83:886–92.

    Article  CAS  PubMed  Google Scholar 

  29. Urushidani T, Okabe S, Takeuchi K, et al. Effects of various amino acids on indomethacin-induced gastric ulcers in rats. Jpn J Pharmacol. 1977;27:316–9.

    Article  CAS  PubMed  Google Scholar 

  30. Kitagawa H, Ikejiri T, Nishiwaki H, et al. Endothelium-dependent adaptive gastric protection. Jpn J Pharmacol. 1992;58(Supp 1):131P.

    Google Scholar 

  31. Szolcsányi J, Barthó L. Capsaicin-sensitive afferents and their role in gastroprotection: an update. J Physiol Paris. 2001;95:181–8.

    Article  PubMed  Google Scholar 

  32. Onodera S, Nishida K, Takeuchi K. Unique profile of lafutidine, a novel histamine H2-receptor antagonist: mucosal protection throughout gastrointestinal tract mediated by capsaicin-sensitive afferent neurons. Drug Des Rev Online. 2004;1:133–44.

    Article  CAS  Google Scholar 

  33. Yamamoto H, Hirata T, Araki H, et al. Inducible types of cyclooxygenase and nitric oxide synthase in adaptive cytoprotection in rat stomachs. J Physiol Paris. 1999;93:405–12.

    Article  CAS  PubMed  Google Scholar 

  34. Matsumoto J, Takeuchi K, Ueshima K, et al. Role of capsaicin-sensitive afferent neurons in mucosal blood flow response of rat stomach induced by mild irritants. Dig Dis Sci. 1992;37:1336–44.

    Article  CAS  PubMed  Google Scholar 

  35. Robert A, Nezamis JE, Lancaster C, et al. Mild irritants prevent gastric necrosis through “adaptive cytoprotection” mediated by prostaglandins. Am J Physiol. 1983;245:G113–21.

    CAS  PubMed  Google Scholar 

  36. Nobuhara Y, Takeuchi K, Okabe S. Vinegar is a dietary mild irritant to the rat gastric mucosa. Jpn J Pharmacol. 1986;41:101–8.

    Article  CAS  PubMed  Google Scholar 

  37. Takeuchi K, Nishiwaki H, Ueshima K, et al. Gastric motility as a possible mechanism of gastric cytoprotection in the rat. In: Kitajima M, editor. Cytoprotection and Cyto-biology. Tokyo: Excerpta Medica; 1992. p. 15–21.

    Google Scholar 

  38. Takeuchi K, Nishiwaki H, Okada M, et al. Mucosal protective action of histamine against gastric lesions induced by HCl in rats: importance of antigastric motor activity mediated by H2-receptors. J Pharmacol Exp Ther. 1988;245:632–8.

    CAS  PubMed  Google Scholar 

Download references

Statement of Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Takeuchi PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Takeuchi, K. (2017). Mucosal Protection by l-Arginine in the Upper Gastrointestinal Tract. In: Patel, V., Preedy, V., Rajendram, R. (eds) L-Arginine in Clinical Nutrition. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-26009-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26009-9_29

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-26007-5

  • Online ISBN: 978-3-319-26009-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics