Skip to main content

l-Arginine Uptake and Its Role in the Survival of Breast Cancer Cells

  • Chapter
  • First Online:

Part of the book series: Nutrition and Health ((NH))

Abstract

l-Arginine is an essential amino acid that plays a critical role in the growth of breast cancer cells. l-Arginine may be derived intracellularly through biosynthesis or extracellularly from diverse sources such as the culture medium in vitro, the diet in vivo, and proteolysis of extracellular polypeptide substrates both in vitro and in vivo. l-Arginine, transported into the cell by cationic amino acid transporters (CATs), is the common substrate of two enzymes, arginase and nitric oxide synthase, for the production of ornithine and nitric oxide (NO), respectively (Fig. 20.1). Ornithine is the precursor of polyamines that are essential for cell proliferation. NO has many physiological and pathophysiological functions, including modulation of cancer cell growth. We have reported that breast cancer cells express several System y+ CATs (Abdelmagid et al., J Cell Biochem 112:1084–1092, 2011). We have also reported that a plasma membrane-bound metalloproteinase, carboxypeptidase-D (CPD), cleaves C-terminal l-arginine residues from extracellular substrates for NO production in cancer cells (Abdelmagid and Too, Endocrinology 149:4821–4828, 2008; Thomas et al., Prostate 72:450–460, 2012) (Fig. 20.1). This chapter presents our studies on the role of System y+ carrier CAT-1 in the uptake of l-arginine in breast cancer cells. Our studies also show that CPD, through its extracellular cleavage of l-arginine, plays a significant role in the intracellular production of NO for the survival of cancer cells. Furthermore, this CPD–arginine–NO pathway is stimulated by hormones, 17β-estradiol, prolactin, and androgens in breast cancer cells, thereby implicating its potential usefulness as a therapeutic target, not only for the modulation of NO levels but also for endocrine therapy in breast cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdelmagid SA, Rickard JA, McDonald WJ, Thomas LN, Too CKL. CAT-1-mediated l-arginine uptake and regulation of nitric oxide synthases for the survival of human breast cancer cell lines. J Cell Biochem. 2011;112:1084–92.

    Article  CAS  PubMed  Google Scholar 

  2. Abdelmagid SA, Too CKL. Prolactin and estrogen upregulate carboxypeptidase-D to promote nitric oxide production and survival of MCF-7 breast cancer cells. Endocrinology. 2008;149:4821–8.

    Article  CAS  PubMed  Google Scholar 

  3. Thomas LN, Morehouse TJ, Too CKL. Testosterone and prolactin increase carboxypeptidase-D and nitric oxide levels to promote survival of prostate cancer cells. Prostate. 2012;72:450–60.

    Article  CAS  PubMed  Google Scholar 

  4. Casero Jr RA, Marton LJ. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov. 2007;6:373–90.

    Article  CAS  PubMed  Google Scholar 

  5. Chandra R, Ganguly AK. Polyamines in relation to human breast, rectal and squamous cell carcinoma. Cancer Lett. 1988;39:311–8.

    Article  Google Scholar 

  6. Singh R, Pervin S, Karimi A, Cederbaum S, Chaudhuri G. Arginase activity in human breast cancer cell lines: N(omega)-hydroxy-l-arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Cancer Res. 2000;60:3305–12.

    CAS  PubMed  Google Scholar 

  7. Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006;6:521–34.

    Article  CAS  PubMed  Google Scholar 

  8. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mortensen K, Holck S, Christensen IJ, Skouv J, Hougaard DM, Blom J, et al. Endothelial cell nitric oxide synthase in peritumoral microvessels is a favorable prognostic indicator in premenopausal breast cancer patients. Clin Cancer Res. 1999;5:1093–7.

    CAS  PubMed  Google Scholar 

  10. Reveneau S, Arnould L, Jolimoy G, Hilpert S, Lejeune P, Saint-Giorgio V, et al. Nitric oxide synthase in human breast cancer is associated with tumor grade, proliferation rate, and expression of progesterone receptors. Lab Invest. 1999;79:1215–25.

    CAS  PubMed  Google Scholar 

  11. Pance A. Nitric oxide and hormones in breast cancer: allies or enemies? Future Oncol. 2006;2:275–88.

    Article  CAS  PubMed  Google Scholar 

  12. Deves R, Boyd CA. Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev. 1998;78:487–545.

    CAS  PubMed  Google Scholar 

  13. Mann GE, Yudilevich DL, Sobrevia L. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev. 2003;83:183–252.

    Article  CAS  PubMed  Google Scholar 

  14. Sperandeo MP, Borsani G, Incerti B, Zollo M, Rossi E, Zuffardi O, et al. The gene encoding a cationic amino acid transporter (SLC7A4) maps to the region deleted in the velocardiofacial syndrome. Genomics. 1998;49:230–6.

    Article  CAS  PubMed  Google Scholar 

  15. Wolf S, Janzen A, Vekony N, Martine U, Strand D, Closs EI. Expression of solute carrier 7A4 (SLC7A4) in the plasma membrane is not sufficient to mediate amino acid transport activity. Biochem J. 2002;364:767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McDonald KK, Zharikov S, Block ER, Kilberg MS. A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the “l-arginine paradox”. J Biol Chem. 1997;272:31213–6.

    Article  CAS  PubMed  Google Scholar 

  17. Hosokawa H, Sawamura T, Kobayashi S, Ninomiya H, Miwa S, Masaki T. Cloning and characterization of a brain-specific cationic amino acid transporter. J Biol Chem. 1997;272:8717–22.

    Article  CAS  PubMed  Google Scholar 

  18. Ito K, Groudine M. A new member of the cationic amino acid transporter family is preferentially expressed in adult mouse brain. J Biol Chem. 1997;272:26780–6.

    Article  CAS  PubMed  Google Scholar 

  19. Vekony N, Wolf S, Boissel JP, Gnauert K, Closs EI. Human cationic amino acid transporter hCAT-3 is preferentially expressed in peripheral tissues. Biochemistry. 2001;40:12387–94.

    Article  CAS  PubMed  Google Scholar 

  20. Arancibia-Garavilla Y, Toledo F, Casanello P, Sobrevia L. Nitric oxide synthesis requires activity of the cationic and neutral amino acid transport system y+L in human umbilical vein endothelium. Exp Physiol. 2003;88:699–710.

    Article  CAS  PubMed  Google Scholar 

  21. Mendes Ribeiro AC, Brunini TM, Yaqoob M, Aronson JK, Mann GE, Ellory JC. Identification of system y+L as the high-affinity transporter for l-arginine in human platelets: up-regulation of l-arginine influx in uraemia. Pflugers Arch. 1999;438:573–5.

    CAS  PubMed  Google Scholar 

  22. Sobrevia L, Gonzalez M. A role for insulin on l-arginine transport in fetal endothelial dysfunction in hyperglycaemia. Curr Vasc Pharmacol. 2009;7:467–74.

    Article  CAS  PubMed  Google Scholar 

  23. Fernandez J, Bode B, Koromilas A, Diehl JA, Krukovets I, Snider MD, et al. Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. J Biol Chem. 2002;277:11780–7.

    Article  CAS  PubMed  Google Scholar 

  24. Cendan JC, Topping DL, Pruitt J, Snowdy S, Copeland 3rd EM, Lind DS. Inflammatory mediators stimulate l-arginine transport and l-arginine-derived nitric oxide production in a murine breast cancer cell line. J Surg Res. 1996;60:284–8.

    Article  CAS  PubMed  Google Scholar 

  25. Brittenden J, Park KG, Heys SD, Ross C, Ashby J, Ah-See A, et al. l-arginine stimulates host defenses in patients with breast cancer. Surgery. 1994;115:205–12.

    CAS  PubMed  Google Scholar 

  26. Brittenden J, Heys SD, Miller I, Sarkar TK, Hutcheon AW, Needham G, et al. Dietary supplementation with l-arginine in patients with breast cancer (>4 cm) receiving multimodality treatment: report of a feasibility study. Br J Cancer. 1994;69:918–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park KG, Heys SD, Blessing K, Kelly P, McNurlan MA, Eremin O, et al. Stimulation of human breast cancers by dietary l-arginine. Clin Sci (Lond). 1992;82:413–7.

    Article  CAS  Google Scholar 

  28. Garlick PJ, McNurlan MA. Protein metabolism in the cancer patient. Biochimie. 1994;76:713–7.

    Article  CAS  PubMed  Google Scholar 

  29. Song L, Fricker LD. Purification and characterization of carboxypeptidase D, a novel carboxypeptidase E-like enzyme, from bovine pituitary. J Biol Chem. 1995;270:25007–13.

    Article  CAS  PubMed  Google Scholar 

  30. Skidgel RA, Erdos EG. Cellular carboxypeptidases. Immunol Rev. 1998;161:129–41.

    Article  CAS  PubMed  Google Scholar 

  31. Tan F, Rehli M, Krause SW, Skidgel RA. Sequence of human carboxypeptidase D reveals it to be a member of the regulatory carboxypeptidase family with three tandem active site domains. Biochem J. 1997;327:81–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Novikova EG, Eng FJ, Yan L, Qian Y, Fricker LD. Characterization of the enzymatic properties of the first and second domains of metallocarboxypeptidase D. J Biol Chem. 1999;274:28887–92.

    Article  CAS  PubMed  Google Scholar 

  33. Varlamov O, Fricker LD. Intracellular trafficking of metallocarboxypeptidase D in AtT-20 cells: localization to the trans-Golgi network and recycling from the cell surface. J Cell Sci. 1998;111:877–85.

    CAS  PubMed  Google Scholar 

  34. O’Malley PG, Sangster SM, Abdelmagid SA, Bearne SL, Too CKL. Characterization of a novel, cytokine-inducible carboxypeptidase D isoform in haematopoietic tumour cells. Biochem J. 2005;390:665–73.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hadkar V, Skidgel RA. Carboxypeptidase D is up-regulated in RAW 264.7 macrophages and stimulates nitric oxide synthesis by cells in l-arginine-free medium. Mol Pharmacol. 2001;59:1324–32.

    CAS  PubMed  Google Scholar 

  36. Hadkar V, Sangsree S, Vogel SM, Brovkovych V, Skidgel RA. Carboxypeptidase-mediated enhancement of nitric oxide production in rat lungs and microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2004;287:L35–45.

    Article  CAS  PubMed  Google Scholar 

  37. Rossiello R, Carriero MV, Giordano GG. Distribution of ferritin, transferrin and lactoferrin in breast carcinoma tissue. J Clin Pathol. 1984;37:51–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arcasoy MO, Amin K, Karayal AF, Chou SC, Raleigh JA, Varia MA, et al. Functional significance of erythropoietin receptor expression in breast cancer. Lab Invest. 2002;82:911–8.

    Article  CAS  PubMed  Google Scholar 

  39. Cassoni P, Marrocco T, Sapino A, Allia E, Bussolati G. Oxytocin synthesis within the normal and neoplastic breast: first evidence of a local peptide source. Int J Oncol. 2006;28:1263–8.

    CAS  PubMed  Google Scholar 

  40. Arcasoy MO, Amin K, Vollmer RT, Jiang X, Demark-Wahnefried W, Haroon ZA. Erythropoietin and erythropoietin receptor expression in human prostate cancer. Mod Pathol. 2005;18:421–30.

    Article  CAS  PubMed  Google Scholar 

  41. Whittington K, Assinder S, Gould M, Nicholson H. Oxytocin, oxytocin-associated neurophysin and the oxytocin receptor in the human prostate. Cell Tissue Res. 2004;318:375–82.

    Article  CAS  PubMed  Google Scholar 

  42. Tillotson JK, Rose DP. Endogenous secretion of epidermal growth factor peptides stimulates growth of DU145 prostate cancer cells. Cancer Lett. 1991;60:109–12.

    Article  CAS  PubMed  Google Scholar 

  43. Murphy LC, Murphy LJ, Dubik D, Bell GI, Shiu RP. Epidermal growth factor gene expression in human breast cancer cells: regulation of expression by progestins. Cancer Res. 1988;48:4555–60.

    CAS  PubMed  Google Scholar 

  44. Barrett A, Rawlings N, Woessner J. Handbook of proteolytic enzymes. London: Academic; 1998.

    Google Scholar 

  45. Too CKL, Vickaryous N, Boudreau RT, Sangster SM. Identification and nuclear localization of a novel prolactin and cytokine-responsive carboxypeptidase D. Endocrinology. 2001;142:1357–67.

    CAS  PubMed  Google Scholar 

  46. Koirala S, Thomas LN, Too CKL. Prolactin/Stat5 and androgen R1881 coactivate carboxypeptidase-D gene in breast cancer cells. Mol Endocrinol. 2014;28:331–43.

    Article  PubMed  Google Scholar 

  47. Thomas LN, Merrimen J, Bell DG, Rendon R, Goffin V, Too CKL. Carboxypeptidase-D is elevated in prostate cancer and its anti-apoptotic activity is abolished by combined androgen and prolactin receptor targeting. Prostate. 2014;74:732–42.

    Google Scholar 

  48. Timblin B, Rehli M, Skidgel RA. Structural characterization of the human carboxypeptidase D gene and its promoter. Int Immunopharmacol. 2002;2:1907–17.

    Article  CAS  PubMed  Google Scholar 

  49. Goffin V, Binart N, Touraine P, Kelly PA. Prolactin: the new biology of an old hormone. Annu Rev Physiol. 2002;64:47–67.

    Article  CAS  PubMed  Google Scholar 

  50. Caso G, McNurlan MA, McMillan ND, Eremin O, Garlick PJ. Tumour cell growth in culture: dependence on l-arginine. Clin Sci (Lond). 2004;107:371–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our studies were funded by the Canadian Institutes of Health Research (CIHR), CIHR Regional Partnerships Program with the Nova Scotia Health Research Foundation (NSHRF) and the Dalhousie Cancer Research Program, and the Canadian Breast Cancer Foundation/Atlantic Chapter (to CKLT). SAA was a recipient of graduate studentships from the Cancer Research Training Program at Dalhousie University and NSHRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine K. L. Too BSc (Hons), MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Too, C.K.L., Abdelmagid, S.A. (2017). l-Arginine Uptake and Its Role in the Survival of Breast Cancer Cells. In: Patel, V., Preedy, V., Rajendram, R. (eds) L-Arginine in Clinical Nutrition. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-26009-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26009-9_20

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-26007-5

  • Online ISBN: 978-3-319-26009-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics