Skip to main content

Polyolefin Adhesion Modifications

  • Chapter
  • First Online:
Polyolefin Compounds and Materials

Abstract

Polyolefins exhibit excellent properties and the knowledge of their adhesion that are very important for many applications such as those in packaging, building, automobile, aeronautic, aerospace, electronics, and sport industries. Poor surface adhesion represents a serious problem in situations where other laminates, films, or metallic layers are imparted onto polyolefins. Adhesion represents the contact between two solids, for instance, in coatings, polymer blends, paints, multilayered sandwiches, adhesive joints, or composites materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Shenton, M.C. Lovell-Hoare, G.C. Stevens, Adhesion enhancement of polymer surfaces by atmospheric plasma treatment. J. Phys. D 34, 2754–2760 (2001)

    Article  CAS  Google Scholar 

  2. I. Novák, A. Popelka, I. Chodák, J. Sedliačik, Study of adhesion and surface properties of polypropylene. In Polypropylene 2012, ed. by F. Dogan, InTech. pp. 1–37

    Google Scholar 

  3. A.J. Kinloch, in Adhesives in Engineering (IMechE, London, 1996)

    Google Scholar 

  4. D.E. Packham, Theories of fundamental adhesion. In Handbook of Adhesion Technology, ed. by L.F.M. da Silva, A. Öchsner, R.D. Adams (Springer, Berlin, 2011), pp. 9–38

    Google Scholar 

  5. S. Gorb, in Attachment Devices of Insect Cuticle (Kluwer, Berlin, 2002)

    Google Scholar 

  6. A.J. Kinloch, Review—the science of adhesion part I, surface and interfacial aspects. J. Mater. Sci. 15, 2141–2166 (1980)

    Article  CAS  Google Scholar 

  7. S. Ebnesajjad, Theories of adhesion. In Surface Treatment of Materials for Adhesive Bonding, 2nd edn., ed. by William Andrew (Oxford University Press, Oxford, 2014), pp. 77–91

    Google Scholar 

  8. S. Yang, L. Gu, R.F. Gibson, Nondestructive detection of weak joints in adhesively bonded composite structures. Compos. Struct. 51, 63–71 (2001)

    Article  Google Scholar 

  9. D.M. Brewis and I. Mathieson. Adhesion and Bonding to Polyolefins. Rapra reports, 2002

    Google Scholar 

  10. J.M. Lane, D.J. Hourston, Surface treatments of polyolefins. Prog. Org. Coat. 21, 269–284 (1993)

    Google Scholar 

  11. A. Nihlstrand, T. Hjertberg, K. Johansson, Plasma treatment of polyolefins: influence of material composition: 2. Lacquer adhesion and locus of failure. Polymer 38, 3591–3599 (1997)

    Article  CAS  Google Scholar 

  12. J. Takahashi, A. Hotta, Adhesion enhancement of polyolefins by diamond like carbon coating and photografting polymerization. Diam. Relat. Mater. 26, 55–59 (2012)

    Article  CAS  Google Scholar 

  13. A.A. Tracton, in Coatings Technology Fundamentals, Testing and Processing Techniques (CRC Press, Boca Raton, 2007)

    Google Scholar 

  14. S. Wu, in Polymer Interface and Adhesion (Marcel Dekker, New York City, 1982)

    Google Scholar 

  15. P. Blais, D.J. Carlsson, G.W. Csullog, D.M. Wiles, Chromic acid etching of polyolefin surfaces and adhesive bonding. J. Colloid Interface Sci. 47, 36–649 (1974)

    Article  Google Scholar 

  16. S.R. Holmes-Farley, R.H. Reamey, R. Nuzzo, T.J. Mc Carthy, G.M. Whitesides, Reconstruction of the interface of oxidatively functionalized polyethylene and derivatives on heating. Langmuir 3, 799–815 (1987)

    Article  CAS  Google Scholar 

  17. D. Briggs, D.M. Brewis, M.B. Konieczo, X-ray photoelectron spectroscopy studies of polymer surfaces I: chromic acid etching of polyolefins. J. Mater. Sci. 11, 1270–1277 (1976)

    Article  CAS  Google Scholar 

  18. N. Larsson, P. Stenius, J.C. Eriksson, R. Maripuu, B. Lindberg, ESCA studies of sulfated polyethylene surfaces modified by adsorption of polyethyleneimine and colloidal silica particles. J. Colloid Interface Sci. 90, 127–136 (1982)

    Article  CAS  Google Scholar 

  19. D.A. Olsen, A.J. Osteraas, Sulfur modification of polyethylene surfaces II: modification of polyethylene surfaces with fuming sulfuric acid. J. Polym. Sci. A-1 7, 1921–1926 (1969)

    Google Scholar 

  20. V.A. Orlov, V.D. Zaitseva, V.A. Sinitsyn, E. Rostovtseva, US Patent No. 3,869,303, 1975

    Google Scholar 

  21. R. Rosty, S. Brook, W. Levi, US Patent No. 4,835,016, 1989

    Google Scholar 

  22. L.G. Beholz. US Patent No. 6,100,343, 2000

    Google Scholar 

  23. L.G. Beholz, C.L. Aronson, A. Zand, Adhesion modification of polyolefin surfaces with sodium hypochlorite in acidic media. Polymer 46, 4604–4613 (2005)

    Article  CAS  Google Scholar 

  24. C.L. Aronson, L.G. Beholz, B. Burland, J. Perez, in 25th Annual Meeting of the Adhesion Society (USA) and the Second World Congress on Adhesion and Related Phenomena (WCARP-II), Orlando, Florida; Feb 2002

    Google Scholar 

  25. J.J. Robin, C. Boyer, B. Boutevin, C. Loubat, Synthesis and properties of polyolefin graft copolymers by a grafting “onto” reactive process. Polymer 49, 4519–4528 (2008)

    Article  CAS  Google Scholar 

  26. R. Silva, E.C. Muniz, A.F. Rubira, Multiple hydrophilic polymer ultra-thin layers covalently anchored to polyethylene films. Polymer 49, 4066–4075 (2008)

    Article  CAS  Google Scholar 

  27. V.H. Torres, C.J.V. Rodrigues, C.C.A. Ramos, Poly(vinyl alcohol)/poly(acrylic acid) blends: miscibility studies by DSC and characterization of their thermally induced hydrogels. J. Appl. Polym. Sci. 50, 777–792 (1993)

    Google Scholar 

  28. T. Lippert, Interaction of photons with polymers: from surface modification to ablation. Plasma Process. Polym. 2, 525–546 (2005)

    Article  CAS  Google Scholar 

  29. C. Vasile, in Hanbook of polyolefins (CRC Press, Boca Raton, 2000)

    Google Scholar 

  30. L. Tan, J.P. Deng, W.T. Yang, A facile approach to surface graft vinyl acetate onto polyolefin articles. Polym. Adv. Technol. 15, 523–527 (2004)

    Google Scholar 

  31. T.B. Stachowiak, D.A. Mair, T.G. Holden, L.J. Lee, F. Svec, J.M. Fréchet, Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting. J. Sep. Sci. 30, 1088–1093 (2007)

    Article  CAS  Google Scholar 

  32. P. Lisboa, D. Gilliland, G. Ceccone, A. Valsesia, F. Rossi, Surface functionalisation of polypyrrole films using UV light induced radical activation. Appl. Surf. Sci. 252, 4397–4401 (2006)

    Article  CAS  Google Scholar 

  33. H.M. Ma, R.H. Davis, C.N. Bowman, Principal factors affecting sequential photoinduced graft polymerization. Polymer 42, 8333–8338 (2001)

    Article  CAS  Google Scholar 

  34. L.B. Kong, J.P. Deng, W.T. Yang, Detailed 1D/2D NMR analyses of benzophenone-related reaction products from a photopolymerization system of vinyl acetate and benzophenone. Macromol. Chem. Phys. 207, 2311–2320 (2006)

    Article  CAS  Google Scholar 

  35. W. Yang, B. Rånby, Bulk surface photografting process and its applications II: Principal factors affecting surface photografting. J. Appl. Polym. Sci. 62, 545–555 (1996)

    Article  CAS  Google Scholar 

  36. J. Balart, V. Fombuena, J.M. España, L. Sánchez-Nácher, R. Balart, Improvement of adhesion properties of polypropylene substrates by methyl methacrylate UV photografting surface treatment. Mater. Des. 33, 1–10 (2012)

    Article  CAS  Google Scholar 

  37. K. Kato, E. Uchida, E.-T. Kang, Y. Uyama, Y. Ikada, Polymer surface with graft chains. Prog. Polym. Sci. 28, 209–259 (2003)

    Article  CAS  Google Scholar 

  38. H. Ma, R.H. Davis, C.N. Bowman, A novel sequential photoinduced living graft polymerization. Macromolecules 33, 331–335 (2000)

    Google Scholar 

  39. M. Strobel, V. Jones, C.S. Lyons, M. Ulsh, M.J. Kushner, R. Dorai, M.C. Branch, A comparison of corona-treated and flame-treated polypropylene films. Plasmas Polym. 8, 61–95 (2003)

    Article  CAS  Google Scholar 

  40. J. Warnatz, Hydrocarbon oxidation high-temperature chemistry. Pure Appl. Chem. 72, 2101–2110 (2000)

    Article  CAS  Google Scholar 

  41. I. Glassman, R. Yetter, in Combustion (Elsevier, Netherlands, 2008)

    Google Scholar 

  42. S. Farris, S. Pozzoli, P. Biagioni, L. Duó, S. Mancinelli, L. Piergiovanni, The fundamentals of flame treatment for the surface activation of polyolefin polymers—a review. Polymer 51, 3591–3605 (2010)

    Article  CAS  Google Scholar 

  43. E. Papirer, D.Y. Wu, J. Schultz, Adhesion of flame-treated polyolefins to styrene butadiene rubber. J. Adhes. Sci. Technol. 7, 343–362 (1993)

    Article  CAS  Google Scholar 

  44. F. Garbassi, E. Occhiello, F. Polato, A. Brown, Surface effect of flame treatments on polypropylene. J. Mater. Sci. 22, 1450–1456 (1987)

    Article  CAS  Google Scholar 

  45. J.G. Dillard, T.F. Cromer, C.E. Burtoff, A.J. Cosentino, R.L. Cline, G.M. Maciver, Surface properties and adhesion of flame treated sheet molded composite (SMC). J. Adhes. 26, 181–198 (1988)

    Article  CAS  Google Scholar 

  46. R.L. Ayres, D.L. Shofner, Preparing polyolefin surfaces for inks and adhesives. SPE J. 28, 51–55 (1972)

    CAS  Google Scholar 

  47. D. Briggs, D.M. Brewis, M.B. Konieczko, X-ray photoelectron spectroscopy studies of polymer surfaces. J. Mater. Sci. 14, 1344–1348 (1979)

    Article  CAS  Google Scholar 

  48. W. Brockmann, P.L. Geiß, J. Klingen, B. Schröder, Adhesive Bonding Materials, Applications and Technology (Wiley, New York, 2009)

    Google Scholar 

  49. C. Tendero, Ch. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: a review. Spectrochim. Acta B 61, 2–30 (2006)

    Article  CAS  Google Scholar 

  50. F.S. Denes, S. Manolache, Progress in polymer science. Prog. Polym. Sci. 29, 815–885 (2004)

    Article  CAS  Google Scholar 

  51. Q.F. Wei, Surface characterization of plasma-treated polypropylene fibers. Mater. Charact. 52, 231–235 (2004)

    Article  CAS  Google Scholar 

  52. L. Chvátalová, R. Čermák, P. Ponížil, A. Mráček, Plasma Treatment of Poly(1-butene). In WDS’09 Proceedings of Contributed Papers Part II (2009), pp. 264–267

    Google Scholar 

  53. K. Bazaka, M.V. Jacob, R.J. Crawford, E.P. Ivanova, Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 7, 2015–2028 (2011)

    Article  CAS  Google Scholar 

  54. P. Slepička, N. Slepičková-Kasálková, E. Stránská, L. Bačáková, V. Švorčík, Surface characterization of plasma treated polymers for applications as biocompatible carriers. Expr. Polym. Lett. 7, 535–545 (2013)

    Article  CAS  Google Scholar 

  55. K. Samanta, M. Jassal, A.K. Agrawal, Atmospheric pressure glow discharge plasma an its applications in textile. Indian J. Fibre Text. Res. 31, 83–98 (2006)

    CAS  Google Scholar 

  56. R. Wolf, A.C. Sparavigna, Role of plasma surface treatments on wetting and adhesion. Engineering 2, 397–402 (2010)

    Article  CAS  Google Scholar 

  57. A. Pizzi, K.L. Mittal, Hanbook of Adhesive Technology, Revised and Expanded (Marcel Dekker, New York City, 2003)

    Book  Google Scholar 

  58. T.S. Williams, H. Yu, R.F. Hicks, Atmospheric pressure plasma activation of polymers and composites for adhesive bonding: a critical review. Rev. Adhes. Adhes. 1, 46–87 (2013)

    Article  CAS  Google Scholar 

  59. Y.P. Raizer, in Gas Discharge Physics (Springer, Berlin, 1991)

    Google Scholar 

  60. B. Díaz-Benito, F. Velasco, Atmospheric plasma torch treatment of aluminium: improving wettability with silanes. Appl. Surf. Sci. 287, 263–269 (2013)

    Article  CAS  Google Scholar 

  61. A. Jaworek, A. Krupa, Corona discharge from a multipoint electrode in flowing air. J. Electrostat. 38, 187–197 (1996)

    Article  Google Scholar 

  62. A. Schütze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans. Plasma Sci. 26, 1685–1694 (1998)

    Article  Google Scholar 

  63. J. Park, I. Henins, H.W. Herrmann, G.S. Selwyn, Gas breakdown in an atmospheric pressure radio-frequency capacitive plasma source. J. Appl. Phys. 89, 15–19 (2001)

    Article  CAS  Google Scholar 

  64. Q.C. Sun, D.D. Zhang, L.C. Wadsworth, Corona treatment on polyolefin films. Tappi J. 81, 177–183 (1998)

    Google Scholar 

  65. J. Karger-Kocsis, in Polypropylene an A–Z Reference (Kluwer, Berlin, 1999)

    Google Scholar 

  66. R.S. Bisht, R. Kumar, N. Thaku, Change in surface free energy and surface resistivity of polycarbonate and polypropylene sheets after plasma exposure. Optoelectron. Adv. Mater. 4, 144–147 (2010)

    CAS  Google Scholar 

  67. J.M. Farley, P. Meka, Heat sealing of semicrystalline polymer films III: effect of corona discharge treatment of LLDPE. J. Appl. Polym. Sci. 51, 121–131 (1994)

    Article  CAS  Google Scholar 

  68. J.A. Giacometti, O.N. Oliveira, Corona charging of polymer. IEEE Trans. Electr. Insul. 27, 924–943 (1992)

    Article  Google Scholar 

  69. M. Goldman, A. Goldman, R.S. Sigmond, The corona discharge, its properties and specific uses. Pure Appl. Chem. 57, 1353–1362 (1985)

    CAS  Google Scholar 

  70. M.A. Salam, in High-Voltage Engineering Theory and Practice (Marcel Dekker, New York City, 2000)

    Google Scholar 

  71. D. Skalný, J. Országh, S. Matejčík, N.J. Mason, Ozone generation in positive and negative corona discharge fed by humid oxygen and carbon dioxide. Phys. Scr. T131, 1–3 (2008)

    Article  CAS  Google Scholar 

  72. N. Sellin, J.S.C. Campos, Surface composition analysis of PP films treated by corona discharge. Mater. Res. 6, 163–166 (2003)

    Article  CAS  Google Scholar 

  73. L.A. O’Hare, S. Leadley, B. Parbhoo, Surface physicochemistry of corona-discharge-treated polypropylene films. Surf. Interface Anal. 33, 335–342 (2002)

    Article  CAS  Google Scholar 

  74. D. Zhang, Q. Sun, L.C. Wadsworth, Mechanics of corona treatment on polyolefin films. Polym. Eng. Sci. 38, 965–970 (1998)

    Article  CAS  Google Scholar 

  75. K.V. Pandiyaraj, V. Selvarajan, R.R. Deshmukh, C. Gao, Modification of surface properties of polypropylene (PP) film using DC glow discharge air plasma. Appl. Surf. Sci. 255, 3965–3971 (2009)

    Article  CAS  Google Scholar 

  76. D.J. Carlsson, D.M. Wiles, Surface studies by attenuated total reflection spectroscopy I: corona treatment of polypropylene. Can. J. Chem. 48, 2397–2406 (1970)

    Article  CAS  Google Scholar 

  77. J. Friedrich, S. Wettmarshausen, M. Hennecke, Haloform plasma modification of polyolefin surfaces. Surf. Coat. Technol. 203, 3647–3655 (2009)

    Article  CAS  Google Scholar 

  78. J.F. Friedrich, R. Mix, R.-D. Schulze, A. Meyer-Plath, R. Joshi, S. Wettmarshausen, New plasma techniques for polymer surface modification with monotype functional groups. Plasma Process. Polym. 5, 407–423 (2008)

    Article  CAS  Google Scholar 

  79. E. Kiss, J. Samu, A. Toth, I. Bertoti, Novel ways of covalent attachment of poly (ethylene oxide) onto polyethylene: surface modification and characterization by XPS and contact angle measurements. Langmuir 12, 1651–1657 (1996)

    Article  CAS  Google Scholar 

  80. J.N. Galloway, F.J. Dentener, D.G. Capone, E.W. Boyer, R.W. Howarth, S.P. Seitzinger, G.P. Asner, C.C. Cleveland, P.A. Green, E.A. Holland, D.M. Karl, A.F. Michaels, J.H. Porter, A.R. Townsend, C.J. Vöosmarty, Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004)

    Article  CAS  Google Scholar 

  81. S. Wettmarshausen, H.-U. Mittmann, G. Kühn, G. Hidde, J.F. Friedrich, Plasmabromination—the selective way to monotype functionalized polymer surfaces. Plasma Process. Polym. 4, 832–839 (2007)

    Article  CAS  Google Scholar 

  82. F. Awaja, M. Gilbert, G. Kelly, B. Fox, P.J. Pigram, Adhesion of polymers. Prog. Polym. Sci. 34, 948–968 (2009)

    Article  CAS  Google Scholar 

  83. D.R. Baer, M.H. Engelhard, XPS analysis of nanostructured materials and biological surfaces. J. Electron Spectrosc. 178–179, 415–432 (2010)

    Article  CAS  Google Scholar 

  84. J.C. Vickerman, in Surface Analysis: The Principal Techniques (Wiley, West Sussex, 2003)

    Google Scholar 

  85. R.C. Asensio, M.S.A. Moya, J.M. de la Roja, M. Gómez, Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Anal. Bioanal. Chem. 395, 2081–2096 (2009)

    Article  CAS  Google Scholar 

  86. A. Ghauch, P.-A. Deveau, V. Jacob, P. Baussand, Use of FTIR spectroscopy coupled with ATR for the determination of atmospheric compounds. Talanta 68, 1294–1302 (2006)

    Article  CAS  Google Scholar 

  87. T. Amornsakchai, O. Doaddara, Grafting of acrylamide and acrylic acid onto polyethylene fiber for improved adhesion to epoxy resin. J. Reinf. Plast. Compos. 27, 671–682 (2008)

    Article  CAS  Google Scholar 

  88. A. Karen, N. Man, T. Shibamori, K. Takahashi, TOF-SIMS characterization of industrial materials: from silicon wafer to polymer. Appl. Surf. Sci. 203–204, 541–546 (2003)

    Article  Google Scholar 

  89. Y. Yuan, T.R. Lee, Contact angle and wetting properties. In Surface Science Techniques, ed. by G. Bracco, B. Holst (Springer, Berlin, 2013), pp. 3–34

    Google Scholar 

  90. O. Guise, C. Stroma, N. Preschilla, STEM-in-SEM method for morphology analysis of polymer systems. Polymer 52, 1278–1285 (2011)

    Article  CAS  Google Scholar 

  91. S.J.B. Reed, in Electron Microprobe Analysis and Scanning Electron Microscopy in Geology (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  92. V. Koutsos, Atomic force microscopy and polymers on surfaces. In Atomic Force Microscopy in Process Engineering: An introduction to AFM for Improved Processes and Products, ed. by W. Richard Bowen, N. Hilal (Elsevier, Netherlands, 2009), pp. 225–244

    Google Scholar 

  93. J.G. Williams, H. Hadavinia, B. Cotterell, Anisotropic elastic and elastic–plastic bending solutions for edge constrained beams. Int. J. Solids Struct. 42, 4927–4946 (2005)

    Article  Google Scholar 

  94. R. Mahlberg, H.E.M. Niemi, F.S. Denes, R.M. Rowell, Application of AFM on the adhesion studies of oxygen-plasma-treated polypropylene and lignocellulosics. Langmuir 15, 2985–2992 (1999)

    Article  CAS  Google Scholar 

  95. I. Novák, A. Popelka, I. Krupa, I. Chodák, I. Janigová, T. Nedelčev, M. Špírková, A. Kleinová, High-density polyethylene functionalized by cold plasma and silanes. Vacuum 86, 2089–2094 (2012)

    Article  CAS  Google Scholar 

  96. R.S. Court, M.P.F. Sutcliffe, S.M. Tavakoli, Ageing of adhesively bonded joints—fracture and failure analysis using video imaging techniques. Int. J. Adhes. Adhes. 21, 455–463 (2001)

    Article  CAS  Google Scholar 

  97. J.Y. Cognard, P. Davies, B. Gineste, L. Sohier, Development of an improved adhesive test method for composite assembly design. Compos. Sci. Technol. 65, 359–368 (2005)

    Article  CAS  Google Scholar 

  98. J.M. Burkstrand, Metal‐polymer interfaces: adhesion and x‐ray photoemission studies. J. Appl. Phys. 52(7), 4795–800 (1981)

    Google Scholar 

  99. J.G. Kohl, I.L. Singer, Pull-off behavior of epoxy bonded to silicone duplex coatings. Prog. Org. Coat. 36, 15–20 (1999)

    Article  CAS  Google Scholar 

  100. K.L. Mittal, in Adhesion Measurement of Thin Films, Thick Films and Bulk Coatings (American Society for Testing and Materials, USA, 1976)

    Google Scholar 

  101. T. Sander, S. Tremmel, S. Wartzack, A modified scratch test for the mechanical characterization of scratch resistance and adhesion of thin hard coatings on soft substrates. Surf. Coat. Technol. 206, 1873–1878 (2011)

    Article  CAS  Google Scholar 

  102. M. Friedman, G. Walsh, High performance films: review of new materials and trends. Polym. Eng. Sci. 42, 1756–1788 (2002)

    Article  CAS  Google Scholar 

  103. T.C.M. Chung, Functional polyolefins for energy applications. Macromolecules 466671–6698 (2013)

    Google Scholar 

  104. S.S. Pesetskii, B. Jurkowski, A.I. Kuzavkov, Strength of adhesive joints from functionalized polyethylene and metals. Int. J. Adhes. Adhes. 18, 351–358 (1998)

    Article  CAS  Google Scholar 

  105. W.T. Li, R.B. Charters, B. Luther-Davies, L. Mar, Significant improvement of adhesion between gold thin films and a polymer. Appl. Surf. Sci. 233, 227–233 (2004)

    Article  CAS  Google Scholar 

  106. Y.J. Choi, M.S. Kang, S.H. Kim, J. Cho, S.H. Moon, Characterization of LDPE/polystyrene cation exchange membranes prepared by monomer sorption and UV radiation polymerization. J. Membr. Sci. 223, 201–215 (2003)

    Article  CAS  Google Scholar 

  107. J.P. Badey, E. Espuche, Y. Jugnet, B. Chabert, T.M. Duc, Influence of chemical and plasma treatments on the adhesive properties of PTFE with an epoxy resin. Int. J. Adhes. Adhes. 16, 173–178 (1996)

    Article  CAS  Google Scholar 

  108. S.J. Park, S.Y. Song, J.S. Shin, J.M. Rhee, Effect of surface oxyfluorination on the dyeability of polyethylene film. J. Colloid Interface Sci. 283, 190–195 (2005)

    Article  CAS  Google Scholar 

  109. D. Bandopadhay, A. Tarafdar, A.B. Panda, P. Pramanik, Surface modification of low-density polyethylene films by a novel solution base chemical process. J. Appl. Polym. Sci. 92, 3046–3051 (2004)

    Article  CAS  Google Scholar 

  110. S. Tajima, K. Komvopoulos, Surface modification of low-density polyethylene by inductively coupled argon. J. Phys. Chem. B 109, 17623–17629 (2005)

    Article  CAS  Google Scholar 

  111. S. Tajima, K. Komvopoulos, Effect of ion energy fluence on the topography and wettability of low-density polyethylene exposed to inductively coupled argon plasma. J. Phys. D Appl. Phys. 39, 1084–1094 (2006)

    Article  CAS  Google Scholar 

  112. V. Švorčík, K. Kolářová, P. Slepička, A. Macková, M. Novotná, V. Hnatowicz, Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym. Degrad. Stab. 91(6), 1219–1225 (2006)

    Article  CAS  Google Scholar 

  113. I. Novak, V. Pollak, I. Chodak, Study of surface properties of polyolefins modified by corona discharge plasma. Plasma Process. Polym. 3, 355–364 (2006)

    Article  CAS  Google Scholar 

  114. E.T. Kang, K.G. Neoh, J.L. Shi, K.L. Tan, D.J. Liaw, Surface modification of polymers for adhesion enhancement. Polym. Adv. Technol. 10, 20–29 (1999)

    Article  CAS  Google Scholar 

  115. S. Bhowmik, T.K. Chaki, S. Ray, F. Hoffman, L. Dorn, Experimental investigation into the effect of DC glow discharge pretreatment of HDPE on tensile lap shear strength. Int. J. Adhes. Adhes. 24, 461–470 (2004)

    Article  CAS  Google Scholar 

  116. S. Bhowmik, H.W.W. Bonin, V.T.T. Bui, T.K. Chaki, Physicochemical and adhesion characteristics of high-density polyethylene when treated in a low-pressure plasma under different electrodes. J. Adhes. 82, 1–18 (2006)

    Article  CAS  Google Scholar 

  117. R. Sanchis, O. Fenollar, D. Garcia, L. Sanchez, R. Balart, Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma. Int. J. Adhes. Adhes. 28, 445–451 (2008)

    Article  CAS  Google Scholar 

  118. J.P. Sargent, Durability studies for aerospace applications using peel and wedge tests. Int. J. Adhes. Adhes. 25, 247–256 (2005)

    Article  CAS  Google Scholar 

  119. J.H. Clint, Adhesion and components of solid surface energies. Colloid Interface Sci. 6, 28–33 (2001)

    Article  CAS  Google Scholar 

  120. E. Tomasetti, D. Daoust, R. Legras, P. Bertrand, P.G. Rouxhet, Diffusion of adhesion promoter (CPO) into polypropylene/ethylene–propylene (PP/EP) copolymer blends: mechanism. J. Adhes. Sci. Technol. V15, 1589–1600 (2001)

    Article  Google Scholar 

  121. A.P. Pijpers, R.J. Meier, Adhesion behaviour of polypropylenes after flame treatment determined by XPS(ESCA) spectral analysis. J Electron Spectrosc. Relat. Phenom. 121, 299–313 (2001)

    Article  CAS  Google Scholar 

  122. M. Noeske, J. Degenhardt, S. Strudthoff, U. Lommatzsch, Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion. Int. J. Adhes. Adhes. 24, 171–177 (2004)

    Article  CAS  Google Scholar 

  123. T.L. Wong, C.M.F. Barry, S.A. Orroth, The effects of filler size on the properties of thermoplastic polyolefin blends. J. Vinyl Addit. Technol. 5, 235–240 (1999)

    Article  CAS  Google Scholar 

  124. H. Tang, D.C. Martin, Microstructural studies of interfacial deformation in painted thermoplastic polyolefins (TPOs). J. Mater. Sci. 37, 4783–4791 (2002)

    Article  CAS  Google Scholar 

  125. R.M. Paroli, K.K.Y. Liu, T.R. Simmons, Thermoplastic polyolefin roofing membranes. Constr. Technol. Update 30, 1–4 (1999)

    Google Scholar 

  126. O.J. Kwon, S.S. Tang, S.W. Myung, N. Lu, H.S. Choi, Surface characteristics of polypropylene film treated by an atmospheric pressure plasma. Surf. Coat. Technol. 192, 1–10 (2005)

    Article  CAS  Google Scholar 

  127. C. Cheng, Z. Liye, R.J. Zhan, Surface modification of polymer fibres by the new atmospheric pressure cold plasma jet. Surf. Coat. Technol. 200, 6659–6665 (2006)

    Article  CAS  Google Scholar 

  128. I. Novák, V. Cecen, V. Pollák, Applications of selected multiphase systems, in Handbook of Multiphase Systems, 1st edn., ed. by A. Boudenne, Y. Candau, S. Thomas (Wiley, West Sussex, UK, 2011), pp. 865–920

    Chapter  Google Scholar 

  129. L.D. Renner, D.B. Weibel, Physicochemical regulation of biofilm for-mation. MRS Bull. 36, 347–55 (2011)

    Google Scholar 

  130. A. Worz, B. Berchtold, K. Moosmann, O. Prucker, J. Ruhe, Protein-resistant polymer surfaces. J. Mater. Chem. 22, 19547–19561 (2012)

    Article  CAS  Google Scholar 

  131. F. Debeaufort, J.A. Quezada-Gallo, A. Voilley, Edible films and coatings: tomorrow’s packagings: a review. Crit. Rev. Food Sci. Nutr. 38, 299–313 (1998)

    Article  CAS  Google Scholar 

  132. A. Domard, M. Rinaudo, Preparation and characterization of fully deacetylated chitosan. Int. J. Biol. Macromol. 5, 49–52 (1983)

    Article  CAS  Google Scholar 

  133. F. Ferrero, R. Bongiovanni, Improving the surface properties of cellophane by air plasma treatment. Surf. Coat. Technol. 200, 4770–4776 (2006)

    Article  CAS  Google Scholar 

  134. M.Z. Elsabee, E.S. Abdou, K.S.A. Nagy, M. Eweis, Surface modification of polypropylene films by chitosan and chitosan/pectin multilayer. Carbohydr. Polym. 71, 187–195 (2008)

    Article  CAS  Google Scholar 

  135. A. Popelka, I. Novák, M. Lehocký, I. Junkar, M. Mozetič, A. Kleinová, I. Janigová, M. Šlouf, F. Bílek, I. Chodák, A new route for chitosan immobilization onto polyethylene surface. Carbohydr. Polym. 90, 1501–1508 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Popelka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Popelka, A., Novak, I., Krupa, I. (2016). Polyolefin Adhesion Modifications. In: Al-Ali AlMa'adeed, M., Krupa, I. (eds) Polyolefin Compounds and Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-25982-6_8

Download citation

Publish with us

Policies and ethics