Skip to main content

Polyolefin Composites and Nanocomposites

  • Chapter
  • First Online:
Polyolefin Compounds and Materials

Abstract

Polyolefin composites (POCs) are defined as materials that contain two or more phases (chemically and physically) and have a distinct boundary. The careful combination of different systems results in improved structure and function over the individual constituents alone. Polyolefins have a wide range of applications, are inexpensive, and possess a diverse range of features (Robert et al. in Poly Compos 31:604–611, 2010 [1]; Gellert in Turley in Compos Part A Appl Sci 30:1259–1265, 1999 [2]). One of the primary advantages of polyolefins is that they are recyclable. Their properties can also be improved through composite engineering (Hugo et al. in Plast Rubber Compos 40:317–323, 2011 [3]). Polyolefins may be classified into different groups of thermoplastics and elastomers depending on the type of monomer and their structure (Soares and McKenna in Polyolefin reaction engineering, VCH Verlag GmbH & Co., Weinheim, 2012 [4]). Polyethylene (containing an ethylene monomer unit) and polypropylene (containing propylene monomer units) are two widely used polyolefins with diverse applications (Saman et al. in J Appl Polym Sci 124:1074–1080, 2012 [5]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Robert, R. Roy, B. Benmokrane, Environmental effects on glass fiber reinforced polypropylene thermoplastic composite laminate for structural applications. Polym. Compos. 31, 604–611 (2010)

    CAS  Google Scholar 

  2. E.P. Gellert, D.M. Turley, Seawater immersion ageing of glass—fiber reinforced polymer laminates for marine applications. Compos. Part A—Appl. Sci. 30, 1259–1265 (1999)

    Article  Google Scholar 

  3. A.M. Hugo, L. Scelsi, A. Hodzic, F. Jones, R.R. Dwyer-Joyce, Development of recycled polymer composites for structural applications. Plast. Rubber Compos. 40, 317–323 (2011)

    Article  CAS  Google Scholar 

  4. J.B.P. Soares, T.F.L. McKenna, Polyolefin Reaction Engineering, 1st edn. (Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, 2012)

    Google Scholar 

  5. G. Saman, N.S. Kazemi, M. Behbood, T. Mehdi, Impact strength improvement of wood flour–recycled polypropylene composites. J. Appl. Polym. Sci. 124, 1074–1080 (2012)

    Article  Google Scholar 

  6. R. Karnani, M. Krishnan, R. Narayan, Biofiber-reinforced polypropylene composites. Polym. Eng. Sci. 37, 476–483 (1997)

    Article  CAS  Google Scholar 

  7. M. Noroozi, S.M. Zebarjad, Effects of multiwall carbon nanotubes on the thermal and mechanical properties of medium density polyethylene matrix nano composites produced by a mechanical milling method. J. Vinyl Add. Tech. 16, 147–152 (2010)

    CAS  Google Scholar 

  8. W. Hufenbach, R. Bohm, M. Thieme, A. Winkler, E. Mäder, J. Rausch, Polypropylene/glass fiber 3D-textile reinforced composites for automotive applications. Mater. Des. 32, 1468–1476 (2011)

    Article  CAS  Google Scholar 

  9. M. Garcia, J. Hidalgo, I. Garmendia, J. Garcia-Jaca, Wood–plastics composites with better fire retardancy and durability performance. Compos. Part A—Appl. Sci. 40, 1772–1776 (2009)

    Article  Google Scholar 

  10. P. Panupakorn, E. Chaichana, P. Praserthdam, B. Jongsomjit, Polyethylene/Clay Nanocomposites Produced by In Situ Polymerization with Zirconocene/MAO Catalyst. Journal of Nanomaterial (2013) 9

    Google Scholar 

  11. G. Galgal, C. Ramesh, A. Lele, A Rheological Study On The Kinetics Of Hybrid Formation In Polypropylene Nanocomposites. Macromolecules, (ACS Publications, US, 2001)

    Google Scholar 

  12. N. Taranu, G. Oprisan, M. Budescu, A. Secu, I. Gosav, The use of glass fiber reinforced polymer composites as reinforcement for tubular concrete poles, in Proceedings of the 11th WSEAS International Conference on Sustainability in Science Engineering, ISBN: 978-960-474-080-2, ISSN: 1790-2769

    Google Scholar 

  13. K. Majeed, M. Jawaid, A. Hassan, A. Abu Bakar, H.P.S. Abdul Khalil, A.A. Salema, I. Inuwa, Potential materials for food packaging from nanoclay/natural fibers filled hybrid composites. Mater. Des. 46, 391–410 (2013)

    Google Scholar 

  14. E.R. Degginger, M.P. Dellavecchia, A.H. Steinberg, US 4098943 A Glass Fibers, Mineral Filler. (Allied Chemical Corporation, Morristown)

    Google Scholar 

  15. J.R. Guedes, L.M. Rodrigues, D.R. Mulinari, Mechanical Properties of Natural Fibers Reinforced Polymer Composites: Palm/Low Density Polyethylene XIV SLAP/XII CIP 2014. (Porto de Galinhas, Brazil—1, 2014)

    Google Scholar 

  16. M. Asadzadeh, M.R. Khalili, R. EslamiFarsani, S. Rafizadeh, Bending properties of date palm fiber and jute fiber reinforced polymeric composite. Int. J. Adv. Des. Manuf. Technol. 5, 59–63 (2012)

    CAS  Google Scholar 

  17. M. Biron, Thermoplastics and thermoplastic composites: technical information for plastic user (Butterworth-Heinemann publisher, Elsevier, Amsterdam, 2007)

    Google Scholar 

  18. Y. Xu, W. Gong, Polyisobutylene-based modifiers for glass fiber reinforced unsaturated polyesters composites. Iran. Polym. J. 21, 91–97 (2012)

    Article  CAS  Google Scholar 

  19. P. Annadurai, A.K. Mallick, D.K. Tripathy, Studies on microwave shielding materials based on ferrite- and carbon black-filled EPDM rubber in the X-band frequency. J. Appl. Polym. Sci. 83, 145–150 (2002)

    Article  CAS  Google Scholar 

  20. C.H. Hong, Y.B. Lee, J.W. Bae, J.Y. Jho, B.U. Nam, D.-H. Chang, S.-H. Yoon, K.-J. Lee, Tensile properties and stress whitening of polypropylene/polyolefin elastomer/magnesium hydroxide flame retardant composites for cable insulating application. J. Appl. Polym. Sci. 97, 2311–2318 (2005)

    Article  CAS  Google Scholar 

  21. A.B. Afzal, M.J. Akhtar, M. Nadeem, M.M. Hassan, Dielectric and impedance studies of DBSA doped polyaniline/PVC composites. Curr. Appl. Phys. 10, 601–606 (2010)

    Article  Google Scholar 

  22. K.A. Afrifah, R.A. Hickok, L.M. Matuana, Polybutene as a matrix for wood plastic composite. Compos. Sci. Technol. 70, 167–172 (2010)

    Article  CAS  Google Scholar 

  23. A. Ashori, Wood–plastic composites as promising green-composites for automotive industries. Bioresour. Technol. 99, 4661–4667 (2008)

    Article  CAS  Google Scholar 

  24. J. Li, P. Xue, W. Ding, J. Han, G. Sun, Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 93, 1761–1767 (2009)

    Article  CAS  Google Scholar 

  25. M. Zampaloni, F. Pourboghrat, S.A. Yankovich, B.N. Rodgers, J. Moore, L.T. Drzal, A.K. Mohanty, M. Misra, Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos. A Appl. Sci. Manuf. 38, 1569–1580 (2007)

    Article  Google Scholar 

  26. M. Wang, R. Joseph, W. Bonfield, Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology. Biomaterials 19, 2357–2366 (1998)

    Article  CAS  Google Scholar 

  27. A. Bledzki, J. Gassan, Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 24, 221–274 (1999)

    Article  CAS  Google Scholar 

  28. D. William, Callister (ed.), Material science and engineering: an introduction chapter 17, 522

    Google Scholar 

  29. S. Ahmed, F.R. Jones, A review of particulate reinforcement theories for polymer composites. J. Mater. Sci. 25, 4933–4942 (1990)

    Article  CAS  Google Scholar 

  30. H. Nitz, P. Reichert, H. Römling, R. Mülhaupt, Influence of compatibilizers on the surface hardness, water uptake and the mechanical properties of poly (propylene) wood flour composites prepared by reactive extrusion. Macromol. Mater. Eng. 276, 51–58 (2000)

    Article  Google Scholar 

  31. C.H. Hsueh, Effects of aspect ratios of ellipsoidal inclusions on elastic stress transfer of ceramic composites. J. Am. Ceram. Soc. 72, 344–347 (1989)

    Article  CAS  Google Scholar 

  32. B. Nam, S. Ko, S. Kim, D. Lee, Weight Reduction Of Automobile Using Advanced Polypropylene Composites. (Honam Petrochemical Corp. Daedeok Research. Inst., Daejeon, Korea)

    Google Scholar 

  33. D. Eiras, L.A. Pessan, Mechanical properties of polypropylene/calcium carbonate nanocomposites. Mater. Res. 12, 517–522 (2009)

    Article  CAS  Google Scholar 

  34. J. Holbery, D. Houston, Natural-Fiber-Reinforced Polymer Composites In Automotive Applications, vol. 58. (Springer, Berlin, 2006), pp. 80–86

    Google Scholar 

  35. K. Jayaraman, Manufacturing sisal-polypropylene composites with minimum fibre degradation. Compos. Sci. Technol. 63, 367–374 (2003)

    Article  CAS  Google Scholar 

  36. D. William, Material Science and Engineering an Introduction, 5th edn. Chapter 17, p. 523

    Google Scholar 

  37. R. Kumar, J.S. Dhaliwal, G.S. Kapur, Mechanical properties of modified biofiller polypropylene composites. Polym. Compos. 35, 708–714 (2013)

    Article  Google Scholar 

  38. http://info.smithersrapra.com/downloads/chapters/Engineering%20Plastics.pdf

  39. C.S. Own, D. Seader, N.A. D’Souza, W. Brostow, Cowoven polypropylene/glass composites with polypropylene + polymer liquid crystal interlayers: dynamic mechanical and thermal analysis. Polym. Compos. 19(2), 107–115 (1998)

    Article  CAS  Google Scholar 

  40. M. Dewidar, M. Bakrey, A.M. Hashim, A. Abdel-Haleem, Kh Diab, Mechanical properties of polypropylene reinforced hemp fiber composite. Mater. Phys. Mech. 15, 119–125 (2012)

    CAS  Google Scholar 

  41. M. Wang, L.L. Hench, W. Bonfield, Bioglass/high density polyethylene composite for soft tissue applications: preparation and evaluation. J. Biomed. Mater. Res. 42, 577–586 (1998)

    Article  CAS  Google Scholar 

  42. W. Bonfield, Composites for bone replacement. J. Biomed. Eng. 10, 522–526 (1988)

    Article  CAS  Google Scholar 

  43. W. Bonfield, M.D. Grynpas, A.E. Tully, Hydroxyapatite reinforced polyethylene—a mechanically compatible implant material for bone replacement. Biomaterials 2, 185–186 (1981)

    Article  CAS  Google Scholar 

  44. J. Huang, M. Wang, I. Rehman, J.C. Knowles, W. Bonfield, Analysis of surface structure on bioglass/polyethylene composites in-vitro. Bioceramics 8, 389–395 (1995)

    CAS  Google Scholar 

  45. T. Kokubo, Bioactivity of glasses and glass–ceramics, ed. by P. Ducheyne, T. Kokubo, C.A. Van Blitterswijk, in Bone-Bonding Biomaterials, (Reed Healthcare Communications, Leiderdorp, 1992)

    Google Scholar 

  46. J.A. Juhasz, M. Kawashita, N. Miyata, T. Kokubo, T. Nakamura, S.M. Best, W. Bonfield, Apatite-forming ability and mechanical properties of glass–ceramic A-W-polyethylene composites, Bioceramics 14, 437–440 (2001)

    Google Scholar 

  47. D.M. Bigg, Manufacturing methods for long fiber reinforced polypropylene sheets and laminates, ed. by J. Karger-Kocsis, in Polypropylene: Structure, Blends and Composites. vol. 3 (Chapman & Hall, London, 1995), pp. 263–292

    Google Scholar 

  48. R. Scaffaro, L. Botta, F.P.L. Mantia, Preparation and characterization of polyolefin—based nanocomposite blown films for agricultural applications. Macromol. Mater. Eng. 294, 445–454 (2009)

    Article  CAS  Google Scholar 

  49. M. Ahmad, M.U. Wahit, M.R.A. Kadir, K.Z.M. Dahlan, Mechanical, rheological, and bioactivity properties of ultra high-molecular-weight polyethylene bioactive composites containing polyethylene glycol and hydroxyapatite. Sci. World J. 13, 474851 (2012)

    Google Scholar 

  50. M. Etcheverry, S.E. Barbosa, Glass fiber reinforced polypropylene mechanical properties enhancement by Adhesion improvement. Materials 5, 1084–1113 (2012)

    Article  CAS  Google Scholar 

  51. J.G. Gho, R.A. Garcia. US5854304-A, Epi Environmental Prod Inc (EPIE-Non-Standard)

    Google Scholar 

  52. J. Murphy, Additives for Plastics, 2nd end. (Elsevier Science Inc, New York, 2001)

    Google Scholar 

  53. W. Soroka, Fundamentals of Packaging Technology, 3rd. end, (Institute of Packaging Professionals, Naperville, IL, 2002)

    Google Scholar 

  54. W. Callister, Materials Science and Engineering, 7th edn. (Wiley, New York, 2007)

    Google Scholar 

  55. K. Majeed, M. Jawaid, A. Hassan, A. Abu Bakar, H.P.S. Abdul Khalil, A.A. Salema, I. Inuwa, Potential materials for food packaging from nanoclay/natural fibers filled hybrid composites. Mater. Des. 46, 391–410 (2013)

    Article  CAS  Google Scholar 

  56. Hyun Kim, Jagannath Biswas, Soonja Choe, Effects of stearic acid coating on zeolite in LDPE. LLDPE, HDPE Compos. Polym. 47, 3981–3992 (2006)

    CAS  Google Scholar 

  57. P. Jakubowska, T. Sterzynski, Thermal diffusivity of polyolefin composites highly filled with calcium carbonate. Polymer 57, 271–275 (2012)

    CAS  Google Scholar 

  58. H. Qin, C. Zhao, S. Zhang, G. Chen, M. Yanga, Photo-oxidative degradation of polyethylene/montmorillonite nanocomposite. Polym. Degrad. Stab. 81, 497–500 (2003)

    Google Scholar 

  59. H. Cox, et al. Nanocomposite Systems for Automotive Applications, in Presented at 4th World Congress in Nanocomposites, EMC, San Francisco, 1–3 September 2004

    Google Scholar 

  60. F. Patterson, Nanocomposites—Our Revolutionary Breakthrough. in Presented at 4th World Congress in Nanocomposites, EMC, San Francisco, 1–3 September 2004. Through the Courtesy of M. Verbrugge, General Motors

    Google Scholar 

  61. S. Moritomi, W. Tsuyoshi, K. Susumu, Polypropylene Compounds for Automotive Applications (Sumitomo Chemical Co. Ltd, Tokyo, 2010)

    Google Scholar 

  62. M.M. Davoodi, S.M. Sapuan, A. Aidy, N.A. Abu Osman, A.A. Oshkour, W.A.B. Wan Abas, Development process of new bumper beam for passenger car: a review. Mater. Des. 40, 304–313 (2012)

    Article  CAS  Google Scholar 

  63. H. Yui, Polymer based composite materials. Plastics Age 24 (2005)

    Google Scholar 

  64. E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, T.C. Chung, Polypropylene/montmorillonite nanocomposites. Rev. Synth. Routes Mater. Prop. Chem. Mater. 13, 3516–3523 (2001)

    CAS  Google Scholar 

  65. http://www.nature.com/news/2008/080514/pdf/453264a.pdf

  66. A. Farshidfar, V.H. Asl, H. Nazokdast, Electrical and mechanical properties of conductive carbon black/polyolefin composites mixed with carbon fiber. J. ASTM Int. 3 (2006)

    Google Scholar 

  67. M.Y. Koledintseva, J. Drewniak, R. DuBro, Modeling of shielding composite materials and structures for microwave frequencies. Prog. Electromagn. Res. B 15, 197–215 (2009)

    Article  Google Scholar 

  68. Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, Y. Chen, Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45, 821–827 (2007)

    Article  CAS  Google Scholar 

  69. K.H. Wong, S.J. Pickering, C.D. Rudd, Recycled carbon fibre reinforced polymer composite for electromagnetic interference shielding. Compos. A 41, 693–702 (2010)

    Article  Google Scholar 

  70. J. Feng, H. Heinz, V. Mittal, Advances in Polyolefin Nanocomposites. Chapter 7. Modification of inorganic filler, (Taylor group, 2010)

    Google Scholar 

  71. A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007)

    Article  CAS  Google Scholar 

  72. P. Los, A. Lukomska, S. Kowalska, R. Jeziorska, J. Krupka, Obtaining and properties of polyolefin composites metamaterials with copper micro-and nanoflakes. Polym. Rapid Commun. 56, 324–327 (2011)

    CAS  Google Scholar 

  73. H.M. Seo, J.H. Park, T.D. Dao, H.M. Jeong, Compatibility of functionalized graphene with polyethylene and its copolymers. J. Nanomater. 8 (2013)

    Google Scholar 

  74. S. Kalia, B.S. Kaith, I. Kaur, Cellulose Fibers: Bio- and Nano-Polymer Composites: Green Chemistry and Technology, Polyolefin Based Natural Fiber Composite (Springer, Heidelberg, Dordrecht, London, New York, 2011)

    Book  Google Scholar 

  75. A.A.A. Aziz, S.M. Alauddin, R.M. Salleh, M. Sabet, Influence of magnesium hydroxide/aluminum tri-hydroxide particle size on polymer flame retardancy. Overview Int. J. Chem. Eng. Appl. 3, 437–440 (2012)

    Google Scholar 

  76. B. Weidenfeller, M. Höfer, F.R. Schilling, Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos. Part A: Appl. Sci. Manuf. 35, 423–29 (2004)

    Google Scholar 

  77. G. Guo, G.M. Rizvi, C.B. Park, W.S. Lin, J. Appl. Polym. Sci. 91, 621 (2004)

    Article  CAS  Google Scholar 

  78. P.S. Liu, G.F. Chen. Chapter 7—Producing polymer foams. Porous Mater. Process. Appl. 345–382 (2014)

    Google Scholar 

  79. J.-F. Rondeau, A. Duval, H. Perrin, Inhomogeneous polypropylene/glass fibers undertray: a new broadband absorber, Faurecia Acoustic TechCenter BP 13 - ZI de Villemontry – 08, 210 Mouzan

    Google Scholar 

  80. K.R. Harikumar, K. Joseph, S. Thomas, Jute sack cloth reinforced polypropylene composites: mechanical and sorption studies. J. Reinf. Plast. Compos. 18, 346–372 (1999)

    CAS  Google Scholar 

  81. A.K. Gupta, M. Biswal, S. Mohanty, S.K. Nayak, Mechanical, thermal degradation, and flammability studies on surface modified sisal fiber reinforced recycled polypropylene composites. Adv. Mech. Eng. 2012, 13 (2012)

    Google Scholar 

  82. H. Karia, Handbook of Polypropylene and Polypropylene Composites, Revised and Expanded, (CRC Press, 2003) (Technology & Engineering)

    Google Scholar 

  83. K. Joseph, R. Dias, T. Filho, B. James, S. Thomas, L.H. de Carvalho, A review on sisal fiber reinforced polymer composites. J. Agr. Environ. Eng. 3, 367–379 (1999)

    Google Scholar 

  84. http://www.google.co.in/patents/US4882208

  85. A.K. Haghi, Experimental Analysis of Geotextiles and Geofibers Composites, (Wseas Press)

    Google Scholar 

  86. I.V. Arishina, T.E. Rodionova, N.G. Annenkova, A.N. Sosin, T.I. Andreeva, Investigation of the possibility of developing nanosilver-containing synthetic fibres and strands with prolonged bioactivity. Int. Polym. Sci. Technol. 39, 55 (2012)

    Google Scholar 

  87. P. Brown, K. Stevens, Nanofibers and Nanotechnology in Textiles, Chapter 13. Polyolefin Caly Nano-Composite, (Woodhead Publishing in Textile, 2007)

    Google Scholar 

  88. L.J. Bastarrachea, L.A. McLandsborough, M. Peleg, J.M. Goddard, Antimicrobial N-halamine modified polyethylene: characterization, biocidal efficacy, regeneration, and stability. J. Food Sci. 79, 887–897 (2014)

    Article  Google Scholar 

  89. X. Jiang, A.M. Tafesh, J.B. Williams, H.A. Cash, K.S. Geick, US 7582694 B2High Density Polyethylene, Quaternary Ammonium Alkyl Salt; Extrusion. Lonza, Inc

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolly Bhadra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Al-Thani, N.J., Bhadra, J., Zadeh, K.M. (2016). Polyolefin Composites and Nanocomposites. In: Al-Ali AlMa'adeed, M., Krupa, I. (eds) Polyolefin Compounds and Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-25982-6_6

Download citation

Publish with us

Policies and ethics