Skip to main content

Polyolefins: From Thermal and Oxidative Degradation to Ignition and Burning

  • Chapter
  • First Online:

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

It has been shown that thermal oxidation and ignition of polyolefins have many mechanistic aspects in common. The essential difference between these two phenomena consists in the mechanism of oxygen  with alkyl radicals that is addition reaction in thermal oxidation and disproportionation in ignition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.L. Bolland, G. Gee, Trans. Farad. Soc. 42, 236–243 (1946)

    Article  CAS  Google Scholar 

  2. G.E. Ashby, Oxyluminescence from polymers. J. Polym. Sci. 50, 99–106 (1961)

    Google Scholar 

  3. R.E. Barker, J.H. Daane, P.M. Rentzepis, Thermochemiluminescence of polycarbonate and polypropylene. J. Polym. Sci. A 3, 2033–2045 (1965)

    Google Scholar 

  4. A.M. Wynne, W.W. Wendlandt, The thermal light emission properties of alathon 1: effect of experimental parameters. Thermochim. Acta 14, 61–69 (1976)

    Article  CAS  Google Scholar 

  5. M.P. Schard, C.A. Russell, Oxyluminescence of polymers I: general behavior of polymers. J. Appl. Poly. Sci. 8, 985–995 (1964)

    Google Scholar 

  6. L. Reich, S.S. Stivala, Elements of Polymer Degradation. (McGraw-Hill, New York, 1971), pp. 99, 161

    Google Scholar 

  7. C.H. Hsueh, W.W. Wendlandt, Effect of some experimental parameters on the oxyluminescence curves of selected materials. Thermochim. Acta 99, 37–42 (1986)

    Article  CAS  Google Scholar 

  8. W.W. Wendlandt, The oxyluminescence of polymers: a review. Thermochim. Acta 72, 363–372 (1984)

    Article  CAS  Google Scholar 

  9. C.H. Hsueh, W.W. Wendlandt, The kinetics of oxyluminescence of selected polymers. Thermochim. Acta 99, 41–43 (1986)

    Google Scholar 

  10. W.W. Wendlandt, The oxyluminescence and kinetics of oxyluminescence of selected polymers. Thermochim. Acta 71, 129–137 (1983)

    Article  CAS  Google Scholar 

  11. L. Matisová-Rychlá, J. Rychlý, Inherent relations of chemiluminescence and thermooxidation of polymers. In Advances in Chemistry, Series 249: Polymer Durability, Degradation, Stabilization and Lifetime Prediction, ed. by R.L. Clough, N.C. Billingham, K.T. Gillen (Ameircan Chemical Society, Washington DC, 1996), p. 175

    Google Scholar 

  12. J. Rychlý, L. Rychlá, Chemiluminescence from polymers. In Ageing and Stabilisation of Paper, ed. by M. Strlič, J. Kolar (National and University Library, Ljubljana, Slovenia, 2005), pp. 71–90

    Google Scholar 

  13. K. Jacobsson, P. Eriksson, T. Reitberger, B. Stenberg, Chemiluminescence as a tool for polyolefin oxidation studies. In Long Term Properties of Polyolefins, Advances in Polymer Science, vol. 169, ed. by A.C. Albertsson (Springer, Berlin, 2004), pp. 151–176

    Google Scholar 

  14. L. Rychlá, J. Rychlý, New concepts in chemiluminescence at the evaluation of thermooxidative stability of polypropylene from isothermal and non-isothermal experiments. In Polymer Analysis and Degradation (Chap. 7), ed. by A. Jimenez, G.E. Zaikov (Nova Science Publishers, New York, 2000), p. 124

    Google Scholar 

  15. C. Albano, E. de Freitaz, Evaluation of the Kinetics of decomposition of polyolefin blends. Polym. Degrad. Stab. 61, 289–295 (1989)

    Article  Google Scholar 

  16. G. George, M. Celina, Homogeneous and heterogeneous oxidation of polypropylene. In Handbook of Polymer Degradation, ed. by S. Halim Hamid, M. Dekker (Second Edition, Inc., New York, 2000), p. 277

    Google Scholar 

  17. L. Zlatkevich, Luminescence Techniques in Solid State Polymer Research (Chap. 7). (M. Dekker, New York, 1989)

    Google Scholar 

  18. J. Verdu, Oxidative Ageing of Polymers (Wiley, Hoboken, 2012)

    Book  Google Scholar 

  19. J. Pospisil, S. Nespurek, Chain-breaking stabilizers in polymers: the current status. Polym. Degrad. Stab. 49, 99–110 (1995)

    Article  CAS  Google Scholar 

  20. A. Mar’in, L. Greci, P. Dubs, Antioxidant activity of 3-aryl-benzofuran-2-one stabilizers (Irganox HP-136) in polypropylene. Polym. Degrad. Stab. 76, 89–94 (2002)

    Google Scholar 

  21. A. Mar’in, L. Greci, P. Dubs, Physical behavior of 3-aryl-benzofuran-2-one (IrganoxHP-136), in polypropylene. Polym. Degrad. Stab. 78, 3–7 (2002)

    Google Scholar 

  22. X. Meng, Z. Xin, X. Wang, Structure effect of benzofuranone on the antioxidant activity in polypropylene. Polym. Degrad. Stab. 95, 2076–2081 (2010)

    Article  CAS  Google Scholar 

  23. W. Voigt, R. Todesco, New approaches to the melt stabilization of polyolefins. Polym. Degrad. Stab. 77, 397–402 (2002)

    Article  CAS  Google Scholar 

  24. X. Meng, W. Gong, Z. Xin, Zi Cai, Study on the antioxidant activities of benzofuranones in melt processing of polypropylene. Polym. Degrad. Stab. 91, 2888–2893 (2006)

    Article  CAS  Google Scholar 

  25. P. Solera, New trends in polymer stabilization. J. Vinyl Addit. Technol. 4(3), 197–210 (1998)

    Google Scholar 

  26. V. Babrauskas, Development of the cone calorimeter—A bench-scale heat release rate apparatus based on oxygen consumption. Fire Mater. 8, 81–95 (1984)

    Google Scholar 

  27. V. Babrauskas, R.D. Peacock, Heat release rate: the single most important variable in fire hazard. Fire Saf. J. 18, 255–272 (1992)

    Article  CAS  Google Scholar 

  28. C. Huggett, Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 4, 61–65 (1980)

    Article  CAS  Google Scholar 

  29. V. Babrauskas, Related quantities; (a) heat of combustion and potential heat. In Heat Release in Fires (Chap. 8), ed. by V. Babrauskas, S.J. Grayson (E & FN Spon, Chapman & Hall, London, 1996)

    Google Scholar 

  30. ISO 5660-1:2002, Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: heat release rate (cone calorimeter method)

    Google Scholar 

  31. ISO 5660-2:2002, Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 2: smoke production rate (dynamic measurement)

    Google Scholar 

  32. ISO/TR 5660-3:2003, Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 3: guidance on measurement

    Google Scholar 

  33. T.R. Hull, B.K. Candola, Fire retardancy of polymers: new strategies and mechanisms. Science (2009)

    Google Scholar 

  34. B. Schartel, Fire retardancy of polymeric materials (Chap. 15). In Uses of Fire Tests in Materials Flammability Development, 2nd edn, ed. by C.A. Wilkie, A.B. Morgan (CRC Press, New York, 2009)

    Google Scholar 

  35. J. Lindholm, A. Brink, M. Hupa, The influence of decreased sample size on cone calorimeter results. Fire Mater. 36, 63–73 (2012)

    Article  CAS  Google Scholar 

  36. J. Rychlý, L. Rychlá, K. Csomorová, Characterisation of materials burning by a cone calorimeter 1: pure polymers. J. Mater. Sci. Eng. A2, 174–182 (2012)

    Google Scholar 

  37. B. Schartel, T.R. Hull, Development of fire-retarded materials—interpretation of cone calorimeter data. Fire Mater. 31, 327–354 (2007)

    Article  CAS  Google Scholar 

  38. J.W. Gilman, C.L. Jackson, A.B. Morgan, R. Harris Jr., Flammability properties of polymer—layered silicate nanocomposites: polypropylene and polystyrene nanocomposites. Chem. Mater. 12, 1866–1873 (2000)

    Google Scholar 

  39. T. Kashiwagi, E. Grulke, J. Hilding, K. Groth, R. Harris, K. Butler, J. Shields, S. Kharchenko, J. Douglas, Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 45, 4227–4239 (2004)

    Article  CAS  Google Scholar 

  40. J. Rychly, M. Hudakova, L. Rychla, Cone calorimetry burning of thermally thin polyethylene. J. Therm. Anal. Calorim. 115, 527–535 (2014)

    Article  CAS  Google Scholar 

  41. D. Hopkins Jr., Predicting the ignition time and burning rate of thermoplastics in the cone calorimeter, Thesis, NIST-GCR-95-677, Faculty of the Graduate School of The University of Maryland, 1995

    Google Scholar 

Download references

Acknowledgements

This publication is the result of the project implementation: Centre for materials, layers and systems for applications and chemical processes under extreme conditions. Part II supported by the Research and Development Operational Programme funded by the ERDF. The acknowledgements are also due to Grant Agency VEGA 2/0147/12, VEGA 2/0161/14, VEGA 2/0122/15 and to HUSK programme 1101/1.2.1/0209, Advanced bio-friendly polymers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Rychlý .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rychlý, J., Rychlá, L. (2016). Polyolefins: From Thermal and Oxidative Degradation to Ignition and Burning. In: Al-Ali AlMa'adeed, M., Krupa, I. (eds) Polyolefin Compounds and Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-25982-6_12

Download citation

Publish with us

Policies and ethics