Skip to main content

Role of MGDG and Non-bilayer Lipid Phases in the Structure and Dynamics of Chloroplast Thylakoid Membranes

  • Chapter
  • First Online:
Lipids in Plant and Algae Development

Part of the book series: Subcellular Biochemistry ((SCBI,volume 86))

Abstract

In this chapter we focus our attention on the enigmatic structural and functional roles of the major, non-bilayer lipid monogalactosyl-diacylglycerol (MGDG) in the thylakoid membrane. We give an overview on the state of the art on the role of MGDG and non-bilayer lipid phases in the xanthophyll cycles in different organisms. We also discuss data on the roles of MGDG and other lipid molecules found in crystal structures of different photosynthetic protein complexes and in lipid-protein assemblies, as well as in the self-assembly of the multilamellar membrane system. Comparison and critical evaluation of different membrane models – that take into account and capitalize on the special properties of non-bilayer lipids and/or non-bilayer lipid phases, and thus to smaller or larger extents deviate from the ‘standard’ Singer-Nicolson model – will conclude this review. With this chapter the authors hope to further stimulate the discussion about, what we think, is perhaps the most exciting question of membrane biophysics: the why and wherefore of non-bilayer lipids and lipid phases in, or in association with, bilayer biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armbruster U, Labs M, Pribil M, Viola S, Xu W, Scharfenberg M, Hertle AP, Rojahn U, Jensen PE, Rappaport F, Joliot P, Dörmann P, Wanner G, Leister D (2013) Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25:2661–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnoux P, Morosinotto T, Saga G, Bassi R, Pignol D (2009) A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana. Plant Cell 21:2036–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aronsson H, Schöttler MA, Kelly AA, Sundqvist C, Dörmann P, Karim S, Jarvis P (2008) Monogalactosyldiacylglycerol deficiency in Arabidopsis affects pigment composition in the prolamellar body and impairs thylakoid membrane energization and photoprotection in leaves. Plant Physiol 148:580–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassi R, Pineau B, Dainese P, Marquardt J (1993) Carotenoid-binding proteins of photosystem II. Eur J Biochem 212:297–303

    Article  CAS  PubMed  Google Scholar 

  • Benning C, Beatty JT, Prince RC, Somerville CR (1993) The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation. Proc Natl Acad Sci U S A 90:1561–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudière L, Michaud M, Petroutsos D, Rébeillé F, Falconet D, Bastien O, Roy S, Finazzi G, Rolland N, Jouhet J, Block MA, Maréchal E (2014) Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochim Biophys Acta 1837:470–480

    Article  PubMed  CAS  Google Scholar 

  • Brown MF (2012) Curvature forces in membrane lipid-protein interactions. Biochemistry 51:9782–9795

    Article  CAS  PubMed  Google Scholar 

  • Büch K, Stransky H, Hager A (1995) FAD is a further essential cofactor of the NAD(P)H and O2-dependent zeaxanthin-epoxidase. FEBS Lett 376:45–48

    Article  PubMed  Google Scholar 

  • Büchel C (2003) Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42:13027–13034

    Article  PubMed  CAS  Google Scholar 

  • Büchel C (2015) Evolution and function of light harvesting proteins. J Plant Physiol 172:62–75

    Article  PubMed  CAS  Google Scholar 

  • Castro V, Dvinskikh SV, Widmalm G, Sandström D, Maliniak A (2007) NMR studies of membranes composed of glycolipids and phospholipids. Biochim Biophys Acta 1768:2432–2437

    Article  CAS  PubMed  Google Scholar 

  • Coesel S, Obornik M, Varela J, Falciatore A, Bowler C (2008) Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. PLoS ONE 3, e2896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Csiszár A, Klumpp E, Bóta A, Szegedi K (2003) Effect of 2,4-dichlorophenol on DPCC/water liposomes studied by X-ray and freez-facture electron microscopy. Chem Phys Lipids 126:155–166

    Article  PubMed  CAS  Google Scholar 

  • Cullis PR, de Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 559:399–420

    Article  CAS  PubMed  Google Scholar 

  • de Kruijff B (1997) Biomembranes. Lipids beyond the bilayer. Nature 386:129–130

    Article  PubMed  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    Article  CAS  PubMed  Google Scholar 

  • Demé B, Cataye C, Block MA, Maréchal E, Jouhet J (2014) Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. FASEB J 28:3373–3383

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III, Garab G, Govindjee (eds) (2014) Non-photochemical quenching and thermal energy dissipation in plants, algae and cyanobacteria, Advances in Photosynthesis and Respiration. Springer, Dordrecht

    Google Scholar 

  • Domonkos I, Laczko-Dobos H, Gombos Z (2008) Lipid-assisted protein-protein interactions that support photosynthetic and other cellular activities. Prog Lipid Res 47:422–435

    Article  CAS  PubMed  Google Scholar 

  • Domonkos I, Kis M, Gombos Z, Ughy B (2013) Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res 52:539–561

    Article  CAS  PubMed  Google Scholar 

  • Dörmann P, Benning C (2002) Galactolipids rule in seed plants. Trends Plant Sci 7:112–118

    Article  PubMed  Google Scholar 

  • Epand RM (1998) Lipid polymorphism and protein–lipid interactions. Biochim Biophys Acta 1376:353–368

    Article  CAS  PubMed  Google Scholar 

  • Garab G (2014) Hierarchical organization and structural flexibility of thylakoid membranes. Biochim Biophys Acta 1837:481–494

    Article  CAS  PubMed  Google Scholar 

  • Garab G, Mustardy L (1999) Role of LHCII-containing macrodomains in the structure, function and dynamics of grana. Aust J Plant Physiol 27:649–658

    Article  Google Scholar 

  • Garab G, Lohner K, Laggner P, Farkas T (2000) Self-regulation of the lipid content of membranes by non-bilayer lipids: a hypothesis. Trends Plant Sci 5:489–494

    Article  CAS  PubMed  Google Scholar 

  • Georgiev GA, Ivanov SI, Jordanova A, Tsanova A, Getov V, Dimitrov M, Lalchev Z (2012) Interaction of monogalactosyldiacylglycerol with cytochrome b6f complex in surface films. Biochem Biophys Res Commun 419:648–651

    Article  CAS  PubMed  Google Scholar 

  • Gibbs SP (1962) The ultrastructure of the pyrenoids of algae, exclusive of the green algae. J Ultra Mol Struct R 7:247–261

    Article  Google Scholar 

  • Gibbs SP (1970) The comparative ultrastructure of the algal chloroplast. Ann NY Acad Sci 175:454–473

    Article  Google Scholar 

  • Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res 106:103–122

    Article  CAS  PubMed  Google Scholar 

  • Goss R, Lepetit B (2015) Biodiversity of NPQ. J Plant Physiol 172:13–32

    Article  CAS  PubMed  Google Scholar 

  • Goss R, Wilhelm C (2009) Lipids in algae, lichens and mosses. In: Wada H, Murata N, Govindjee (eds) Lipids in photosynthesis: essential and regulatory functions. Springer, Dordrecht, pp 117–137

    Chapter  Google Scholar 

  • Goss R, Richter M, Wild A (1997) Pigment composition of PS II pigment protein complexes purified by anion exchange chromatography. Identification of xanthophyll cycle pigment binding proteins. J Plant Physiol 151:115–119

    Article  CAS  Google Scholar 

  • Goss R, Lohr M, Latowski D, Grzyb J, Vieler A, Wilhelm C, Strzalka K (2005) Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation. Biochemistry 44:4028–4036

    Article  CAS  PubMed  Google Scholar 

  • Goss R, Latowski D, Grzyb J, Vieler A, Lohr M, Wilhelm C, Strzalka K (2007) Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane. Biochim Biophys Acta 1768:67–75

    Article  CAS  PubMed  Google Scholar 

  • Goss R, Nerlich J, Lepetit B, Schaller S, Vieler A, Wilhelm C (2009) The lipid dependence of diadinoxanthin de-epoxidation presents new evidence for a macrodomain organization of the diatom thylakoid membrane. J Plant Physiol 166:1839–1854

    Article  CAS  PubMed  Google Scholar 

  • Gruner SM (1985) Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc Natl Acad Sci U S A 82:3665–3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grzyb J, Latowski D, Strzalka K (2006) Lipocalins-a family portrait. J Plant Physiol 163:895–915

    Article  CAS  PubMed  Google Scholar 

  • Güler S, Seeliger A, Härtel H, Renger G, Benning C (1996) A null mutant of Synechococcus sp. PCC7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. J Biol Chem 271:7501–7507

    Article  PubMed  Google Scholar 

  • Gundermann K, Büchel C (2012) Factors determining the fluorescence yield of fucoxanthin-chlorophyll complexes (FCP) involved in non-photochemical quenching in diatoms. Biochim Biophys Acta 1817:1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Zhang Z, Bi Y, Yang W, Xu Y, Zhang L (2005) Decreased stability of photosystem I in dgd1 mutant of Arabidopsis thaliana. FEBS Lett 579:3619–3624

    Article  CAS  PubMed  Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-angstrom resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342

    Article  CAS  PubMed  Google Scholar 

  • Hager A (1967a) Untersuchungen über die lichtinduzierten, reversiblen Xanthophyllumwandlungen an Chlorella und Spinacia oleracea. Planta 74:148–172

    Article  CAS  PubMed  Google Scholar 

  • Hager A (1967b) Untersuchungen über die Rückreaktionen im Xanthophyll-Cyclus bei Chlorella, Spinacia und Taxus. Planta 76:138–148

    Article  CAS  PubMed  Google Scholar 

  • Hager A (1969) Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin-Zeaxanthin-Umwandlung: Beziehungen zur Photophosphorylierung. Planta 89:224–243

    Article  CAS  PubMed  Google Scholar 

  • Hager A (1975) Die reversiblen, lichtabhängigen Xanthophyllumwandlungen im Chloroplasten. Ber Deutsch Bot Ges 88:27–44

    CAS  Google Scholar 

  • Hager A, Holocher K (1994) Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192:581–589

    Article  CAS  Google Scholar 

  • Hager A, Stransky H (1970) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. Archiv Mikrobiol 73:77–89

    Article  CAS  Google Scholar 

  • Harańczyk H, Strzałka K, Dietrich W, Blicharski JS (1995) 31P-NMR observation of the temperature and glycerol induced non-lamellar phase formation in wheat thylakoid membranes. J Biol Phys 21:125–139

    Article  Google Scholar 

  • Harwood JL (1998) Involvement of chloroplast lipids in the reaction of plants submitted to stress. In: Siegenthaler P-A, Murata N (eds) Advances in photosynthesis. Lipids in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 287–302

    Google Scholar 

  • Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci U S A 96:8762–8767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hieber AD, Bugos RC, Yamamoto HY (2000) Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. Biochim Biophys Acta 1482:84–91

    Article  CAS  PubMed  Google Scholar 

  • Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 483:262–267

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV (2005) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56:365–373

    Article  CAS  PubMed  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    Article  CAS  PubMed  Google Scholar 

  • Jahns P, Latowski D, Strzalka K (2009) Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim Biophys Acta 1787:3–14

    Article  CAS  PubMed  Google Scholar 

  • Jakob T, Goss R, Wilhelm C (2001) Unusual pH-dependence of diadinoxanthin de-epoxidase activation causes chlororespiratory induced accumulation of diatoxanthin in the diatom Phaeodactylum tricornutum. J Plant Physiol 158:383–390

    Article  CAS  Google Scholar 

  • Janik E, Bednarska J, Zubik M, Puzio M, Luchowski R, Grudzinski W, Mazur R, Garstka M, Maksymiec W, Kulik A, Dietler G, Gruszecki WI (2013) Molecular architecture of plant thylakoids under physiological and light stress conditions: a study of lipid-light-harvesting complex II model membranes. Plant Cell 25:2155–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Jouhet J (2013) Importance of the hexagonal lipid phase in biological membrane organization. Front Plant Sci 4:494. doi:10.3389/fpls.2013.00494. eCollection 2013

    Article  PubMed  PubMed Central  Google Scholar 

  • Kansy M, Wilhelm C, Goss R (2014) Influence of thylakoid membrane lipids on the structure and function of the plant photosystem II core complex. Planta 240:781–796

    Article  CAS  PubMed  Google Scholar 

  • Kern J, Guskov A (2011) Lipids in photosystem II: multifunctional cofactors. J Photochem Photobiol B Biology 104:19–34

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H, Haase W, Wegner S, Danielsson R, Ackermann R, Albertsson PA (2007) Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplasts. Biochemistry 46:11169–11176

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Narise T, Sonoike K, Hashimoto H, Sato N, Kondo M, Nishimura M, Sato M, Toyooka K, Sugimoto K, Wada H, Masuda T, Ohta H (2013) Role of galactolipid biosynthesis incoordinated development of photosynthetic complexes and thylakoid membranes during chloroplast biogenesis in Arabidopsis. Plant J 73:250–261

    Article  CAS  PubMed  Google Scholar 

  • Kouril R, Wientjes E, Bultema JB, Croce R, Boekema EJ (2013) High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim Biophys Acta 1827:411–419

    Article  CAS  PubMed  Google Scholar 

  • Koynova R, Tenchov B (2013) Recent patents on nonlamellar liquid crystalline lipid phases in drug delivery. Recent Pat Drug Deliv Formul 7:165–173

    Article  CAS  PubMed  Google Scholar 

  • Krause GH, Jahns P (2004) Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching. Characterization and function. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 463–495

    Chapter  Google Scholar 

  • Krumova SB, Dijkema C, de Waard P, Van As H, Garab G, van Amerongen H (2008a) Phase behaviour of phosphatidylglycerol in spinach thylakoid membranes as revealed by 31P-NMR. Biochim Biophys Acta 1778:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Krumova SB, Koehorst RB, Bóta A, Páli T, van Hoek A, Garab G, van Amerongen H (2008b) Temperature dependence of the lipid packing in thylakoid membranes studied by time- and spectrally resolved fluorescence of Merocyanine 540. Biochim Biophys Acta 1778:2823–2833

    Article  CAS  PubMed  Google Scholar 

  • Krumova SB, Laptenok SP, Kovács L, Tóth T, van Hoek A, Garab G, van Amerongen H (2010) Digalactosyl-diacylglycerol-deficiency lowers the thermal stability of thylakoid membranes. Photosynth Res 105:229–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Laczko-Dobos H, Ughy B, Toth SZ, Komenda J, Zsiros O, Domonkos I, Parducz A, Bogos B, Komura M, Itoh S, Gombos Z (2008) Role of phosphatidylglycerol in the function and assembly of Photosystem II reaction center, studied in a cdsA-inactivated PAL mutant strain of Synechocystis sp. PCC6803 that lacks phycobilisomes. Biochim Biophys Acta 1777:1184–1194

    Article  CAS  PubMed  Google Scholar 

  • Laczko-Dobos H, Frycák P, Ughy B, Domonkos I, Wada H, Prokai L, Gombos Z (2010) Remodeling of phosphatidylglycerol in Synechocystis PCC6803. Biochim Biophys Acta 1801:163–170

    Article  CAS  PubMed  Google Scholar 

  • Latowski D, Kruk J, Burda K, Skrzynecka-Jaskier M, Kostecka-Gugala A, Strzalka K (2002) Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers. Eur J Biochem 269:4656–4665

    Article  CAS  PubMed  Google Scholar 

  • Latowski D, Akerlund H-E, Strzalka K (2004) Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. Biochemistry 43:4417–4420

    Article  CAS  PubMed  Google Scholar 

  • Lavaud J, Goss R (2014) The peculiar features of non-photochemical fluorescence quenching in diatoms and brown algae. In: Demmig-Adams B, Adams WW III, Garab G, Govindjee (eds) Non-photochemical quenching and thermal energy dissipation in plants, algae and cyanobacteria, Advances in Photosynthesis and Respiration. Springer, Dordrecht, pp 421–443

    Google Scholar 

  • Lavaud J, Rousseau B, Etienne A (2003) Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms. Biochemistry 42:5802–5808

    Article  CAS  PubMed  Google Scholar 

  • Lee AG (2003) Lipid–protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40

    Article  CAS  PubMed  Google Scholar 

  • Leng J, Sakurai I, Wada H, Shen JR (2008) Effect of phospholipase and lipase treatments on photosystem II core dimer from a thermophilic cyanobacterium. Photosynth Res 98:469–478

    Article  CAS  PubMed  Google Scholar 

  • Lepetit B, Volke D, Szabo M, Hoffmann R, Garab G, Wilhelm C, Goss R (2007) Spectroscopic and molecular characterization of the oligomeric antenna of the diatom Phaeodactylum tricornutum. Biochemistry 46:9813–9822

    Article  CAS  PubMed  Google Scholar 

  • Lepetit B, Volke D, Szabo M, Hoffmann R, Garab G, Wilhelm C, Goss R (2008) The oligomeric antenna of the diatom P. tricornutum – localization of diadinoxanthin cycle pigments. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun. Springer, Dordrecht, pp 277–280

    Google Scholar 

  • Lepetit B, Volke D, Gilbert M, Wilhelm C, Goss R (2010) Evidence for the existence of one antenna-associated, lipid-dissolved, and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiol 154:1905–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepetit B, Goss R, Jakob T, Wilhelm C (2012) Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth Res 111:245–257

    Article  CAS  PubMed  Google Scholar 

  • Liu ZF, Yan HC, Wang KB, Kuang KY, Zhang JP, Gui LL, An XM, Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution. Nature 428:287–292

    Article  CAS  PubMed  Google Scholar 

  • Lohner K (1996) Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem Phys Lipids 81:167–184

    Article  CAS  PubMed  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Toward complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. Nature 438:1040–1044

    Article  CAS  PubMed  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2007) Lipids in photosystem II: interactions with protein and cofactors. Biochim Biophys Acta 1767:509–519

    Article  CAS  PubMed  Google Scholar 

  • Luzzati V (1968) X-ray diffraction studies of lipid–water systems. In: Chapman D (ed) Biological membranes. Academic, New York, pp 71–123

    Google Scholar 

  • Miloslavina Y, Grouneva I, Lambrev PH, Lepetit B, Goss R, Wilhelm C, Holzwarth AR (2009) Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Biochim Biophys Acta 1787:1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Minoda A, Sato N, Nozaki H, Okada K, Takahashi H, Sonoike K, Tsuzuki M (2002) Role of sulfoquinovosyl diacylglycerol for the maintenance of photosystem II in Chlamydomonas reinhardtii. Eur J Biochem 269:2353–2358

    Article  CAS  PubMed  Google Scholar 

  • Mizusawa N, Wada H (2012) The role of lipids in photosystem II. Biochim Biophys Acta 1817:194–208

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Siegenthaler PA (1998) Lipids in photosynthesis: an overview. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 1–20

    Google Scholar 

  • Niyogi KK, Truong TB (2013) Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol 16:307–314

    Article  CAS  PubMed  Google Scholar 

  • Páli T, Garab G, Horvath LI, Kóta Z (2003) Functional significance of the lipid-protein interface in photosynthetic membranes. Cell Mol Life Sci 60:1591–1606

    Article  PubMed  CAS  Google Scholar 

  • Pan J, Cheng X, Sharp M, Ho CS, Khadka N, Katsaras J (2015) Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations. Soft Matter 11:130–138

    Article  CAS  PubMed  Google Scholar 

  • Pfündel EE, Renganathan M, Gilmore AM, Yamamoto HY, Dilley RA (1994) Intrathylakoid pH in isolated Pea chloroplasts as probed by violaxanthin deepoxidation. Plant Physiol 106:1647–1658

    PubMed  PubMed Central  Google Scholar 

  • Pomorski TG, Nylander T, Cárdenas M (2014) Model cell membranes: discerning lipid and protein contributions in shaping the cell. Adv Colloid Interface Sci 205:207–220

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Suga M, Kuang T, Shen JR (2015) Photosynthesis. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348:989–995

    Article  CAS  PubMed  Google Scholar 

  • Quinn PJ (2012) Lipid-lipid interactions in bilayer membranes: married couples and casual liaisons. Prog Lipid Res 51:179–198

    Article  CAS  PubMed  Google Scholar 

  • Reifarth F, Christen G, Seeliger AG, Dormann P, Benning C, Renger G (1997) Modification of the water oxidizing complex in leaves of the dgd1 mutant of Arabidopsis thaliana deficient in the galactolipid digalactosyldiacylglycerol. Biochemistry 36:11769–11776

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Young AJ, Horton P (1994) The effects of illumination on the xanthophyll composition of the photosystem II light-harvesting complexes of spinach thylakoid membranes. Plant Physiol 104:227–234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sackman E (1995) Biological membranes architecture and function. In: Lipowsky R, Sackmann E (eds) Structure and dynamics of membranes. Elsevier, Amsterdam, pp 1–65

    Google Scholar 

  • Saga G, Giorgetti A, Fufezan C, Giacometti GM, Bassi R, Morosinotto T (2010) Mutation analysis of violaxanthin de-epoxidase indentifies substrate-binding sites and residues involved in catalysis. J Biol Chem 285:23763–23770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato N, Sonoike K, Tsuzuki M, Kwaguchi A (1995) Impaired photosystem II in a mutant of Chlamydomonas reinhardtii defective in sulfoquinovosyl diacylglycerol. Eur J Biochem 234:16–23

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Hagio M, Wada H, Tsuzuki M (2000) Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Proc Natl Acad Sci U S A 97:10655–10660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaller S, Latowski D, Jemiola-Rzeminska M, Wilhelm C, Strzalka K, Goss R (2010) The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex of photosystem II (LHCII). Biochim Biophys Acta 1797:414–424

    Article  CAS  PubMed  Google Scholar 

  • Schaller S, Latowski D, Jemioła-Rzemioska M, Dawood A, Wilhelm C, Strzałka K, Goss R (2011) Regulation of LHCII aggregation by different thylakoid membrane lipids. Biochim Biophys Acta 1807:326–335

    Article  CAS  PubMed  Google Scholar 

  • Schaller S, Latowski D, Jemiola-Rzeminska M, Quaas T, Wilhelm C, Strzalka K, Goss R (2012) The investigation of violaxanthin de-epoxidation in the primitive green alga Mantoniella squamata (Prasinophyceae) indicates mechanistic differences in xanthophyll conversion to higher plants. Phycologia 51:359–370

    Article  CAS  Google Scholar 

  • Schaller S, Richter K, Wilhelm C, Goss R (2014) Influence of pH, Mg2+, and lipid composition on the aggregation state of the diatom FCP in comparison to the LHCII of vascular plants. Photosynth Res 119:305–317

    Article  CAS  PubMed  Google Scholar 

  • Schumann A, Goss R, Jakob T, Wilhelm C (2007) Investigation of the quenching efficiency of diatoxanthin in cells of Phaeodactylum tricornutum (Bacillariophyceae) with different pool sizes of xanthophyll cycle pigments. Phycologia 46:113–117

    Article  Google Scholar 

  • Seddon JM, Templer RH (1995) Polymorphism of lipid–water system. In: Lipowsky R, Sackman E (eds) Structure and dynamics of membranes. Elsevier, Amsterdam, pp 97–161

    Google Scholar 

  • Selstam E (1998) Development of thylakoid membranes with respect to lipids. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 209–224

    Google Scholar 

  • Shipley GG, Green JP, Nichols BW (1973) The phase behavior of monogalactosyl, digalactosyl, and sulphoquinovosyl diglycerides. Biochim Biophys Acta 311:531–544

    Article  CAS  PubMed  Google Scholar 

  • Siefermann D, Yamamoto H (1975) NADPH and oxygen-dependent epoxidation of zeaxanthin in isolated chloroplasts. Biochem Biopharm Res Co 62:456–461

    Article  CAS  Google Scholar 

  • Simidjiev I, Barzda V, Mustárdy L, Garab G (1998) Role of thylakoid lipids in the structural flexibility of lamellar aggregates of the isolated light-harvesting chlorophyll a/b complex of photosystem II. Biochemistry 37:4169–4173

    Article  CAS  PubMed  Google Scholar 

  • Simidjiev I, Stoylova S, Amenitsch H, Javorfi T, Mustardy L, Laggner P, Holzenburg A, Garab G (2000) Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc Natl Acad Sci U S A 97:1473–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  • Sozer O, Kis M, Gombos Z, Ughy B (2011) Proteins, glycerolipids and carotenoids in the functional photosystem II architecture. Front Biosci (Landmark Ed) 16:619–643

    Article  CAS  Google Scholar 

  • Steffen R, Kelly AA, Huyer J, Dormann P, Renger G (2005) Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana wild type plants and mutants with genetically modified lipid content. Biochemistry 44:3134–3142

    Article  CAS  PubMed  Google Scholar 

  • Stransky H, Hager A (1970) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllzyklus in verschiedenen Algenklassen. II: Xanthophyceae. Arch Microbiol 71:164–190

    CAS  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL, Picot D (2003) An atypical haem in the cytochrome b(6)f complex. Nature 426:413–418

    Article  CAS  PubMed  Google Scholar 

  • Tietz S, Puthiyaveetil S, Enlow HM, Yarbrough R, Wood M, Semchonok DA, Lowry T, Li Z, Jahns P, Boekema EJ, Lenhert S, Niyogi KK, Kirchhoff H (2015) Functional implications of photosystem II crystal formation in photosynthetic membranes. J Biol Chem 290:14091–14106

    Article  CAS  PubMed  Google Scholar 

  • Tyler AI, Law RV, Seddon JM (2015) X-ray diffraction of lipid model membranes. Methods Mol Biol 1232:199–225

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamaiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • van den Brink-van der Laan E, Killian JA, de Kruijff B (2004) Non-bilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 1666:275–288

    Article  CAS  Google Scholar 

  • Van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ (2015) Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim Biophys Acta 1848:1319–1330

    Article  PubMed  CAS  Google Scholar 

  • Vieler A, Süß R, Wilhelm C, Schiller J (2007) The lipid composition of two different algae (Chlamydomonas reinhardtii, Chlorophyceae and Cyclotella meneghiniana, Bacillariophyceae) investigated by MALDI-TOF MS and TLC. Chem Phys Lipids 150:143–155

    Article  CAS  PubMed  Google Scholar 

  • Vigh L, Escribá PV, Sonnleitner A, Sonnleitner M, Piotto S, Maresca B, Horváth I, Harwood JL (2005) The significance of lipid composition for membrane activity: new concepts and ways of assessing function. Prog Lipid Res 44:303–344

    Article  CAS  PubMed  Google Scholar 

  • Wada H, Murata N (2007) The essential role of phosphatidylglycerol in photosynthesis. Photosynth Res 92:205–215

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Uddin MI, Tanaka K, Yin L, Shi Z, Qi Y, Mano J, Matsui K, Shimomura N, Sakaki T, Deng X, Zhang S (2014) Maintenance of chloroplast structure and function by overexpression of the rice MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE gene leads to enhanced salt tolerance in tobacco. Plant Physiol 165:1144–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams WP (1998) The physical properties of thylakoid membrane lipids and their relation to photosynthesis. In: Siegenthaler PA, Murata N (eds) Advances in photosynthesis. Lipids in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 103–118

    Google Scholar 

  • Williams WP, Brain APR, Dominy PJ (1992) Induction of non-bilayer lipid phase separation in chloroplast thylakoid membranes by compatible co-solutes and its relation to the thermal stability of Photosystem II. Biochim Biophys Acta 1099:137–144

    Article  CAS  Google Scholar 

  • Wu W, Ping W, Wu H, Li M, Gu D, Xu Y (2013) Monogalactosyldiacylglycerol deficiency in tobacco inhibits the cytochrome b6f-mediated intersystem electron transport process and affects the photostability oft he photosystem II apparatus. Biochim Biophys Acta 1827:709–722

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Higashi RM (1978) Violaxanthin de-epoxidase-lipid-composition and substrate-specificity. Arch of Biochem Biophys 190:514–522

    Article  CAS  Google Scholar 

  • Yamamoto H, Nakayama T, Chichester C (1962) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97:168–173

    Article  CAS  PubMed  Google Scholar 

  • Yan JS, Mao DZ, Chen H, Kuang TY, Li LB (2000) Effects of membrane lipids on the electron transfer activity of cytochrome b6f complex from spinach. Acta Bot Sin 42:1267–1270

    CAS  Google Scholar 

  • Yu B, Benning C (2003) Anionic lipids are required for chloroplast structure and function in Arabidopsis. Plant J 36:762–770

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Liu S, Hu Z, Kuang T, Paulsen H, Yang C (2009) Effect of monogalactosyldiacylglycerol on the interaction between photosystem II core complex and its antenna complexes in liposomes of thylakoid lipids. Photosynth Res 99:185–193

    Article  CAS  PubMed  Google Scholar 

  • Zick M, Stroupe C, Orr A, Douville D, Wickner WT (2014) Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion. eLife. doi:10.7554/eLife.01879

    PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Dr. Sashka B. Krumova for fruitful discussions and for the drawing of the simplified membrane model outline in section “A model proposing the co-existence and close association of bilayer and non-bilayer lipid phases”. Financial supports from OTKA (K112688) and TÁMOP (422D-15/1/KONV-2015-0024) to GG and from the DFG (Go 818/7-1) to RG are also acknowledged. Susann Schaller-Laudel is acknowledged for the composition of Fig. 6.3. The authors thank Profs. Lászlo Vígh and Kazimierz Strzalka for inspiring discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Győző Garab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garab, G., Ughy, B., Goss, R. (2016). Role of MGDG and Non-bilayer Lipid Phases in the Structure and Dynamics of Chloroplast Thylakoid Membranes. In: Nakamura, Y., Li-Beisson, Y. (eds) Lipids in Plant and Algae Development. Subcellular Biochemistry, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-25979-6_6

Download citation

Publish with us

Policies and ethics