Skip to main content

Understanding Sugar Catabolism in Unicellular Cyanobacteria Toward the Application in Biofuel and Biomaterial Production

  • Chapter
  • First Online:
Lipids in Plant and Algae Development

Part of the book series: Subcellular Biochemistry ((SCBI,volume 86))

Abstract

Synechocystis sp. PCC 6803 is a model species of the cyanobacteria that undergo oxygenic photosynthesis, and has garnered much attention for its potential biotechnological applications. The regulatory mechanism of sugar metabolism in this cyanobacterium has been intensively studied and recent omics approaches have revealed the changes in transcripts, proteins, and metabolites of sugar catabolism under different light and nutrient conditions. Several transcriptional regulators that control the gene expression of enzymes related to sugar catabolism have been identified in the past 10 years, including a sigma factor, transcription factors, and histidine kinases. The modification of these genes can lead to alterations in the primary metabolism as well as the levels of high-value products such as bioplastics and hydrogen. This review summarizes recent studies on sugar catabolism in Synechocystis sp. PCC 6803, emphasizing the importance of elucidating the molecular mechanisms of cyanobacterial metabolism for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen MMM, Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Microbiol 69:114–120

    CAS  Google Scholar 

  • Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267

    Article  CAS  PubMed  Google Scholar 

  • Aquirre von Wobeser E, Ibelings BW et al (2011) Concerted changes in gene expression and cell physiology of the cyanobacterium Synechocystis sp. strain PCC 6803 during transitions between nitrogen and light-limited growth. Plant Physiol 155:1445–1457

    Article  Google Scholar 

  • Azuma M, Osanai T, Hirai MY et al (2011) A response regulator Rre37 and an RNA polymerase sigma factor SigE represent two parallel pathways to activate sugar catabolism in a cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 52:404–412

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  CAS  PubMed  Google Scholar 

  • Dutheil J, Saenkham P, Sakr S et al (2012) The AbrB2 autorepressor, expressed from an atypical promoter, represses the hydrogenase operon to regulate hydrogen production in Synechocystis strain PCC6803. J Bacteriol 194:5423–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forchhammer K (2004) Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiol Rev 28:319–333

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Dominguez M, Reyes JC, Florencio FJ (1999) Glutamine synthetase inactivation by protein-protein interaction. Proc Natl Acad Sci U S A 96:7161–7166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giner-Lamia J, Lopez-Maury L, Reyes JC, Florencio FJ (2012) The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 159:1806–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto-Seki A, Shirokane M, Masuda S et al (1999) Specificity crosstalk among group 1 and group 2 sigma factors in the cyanobacterium Synechococcus sp. PCC7942: in vitro specificity and a phylogenetic analysis. Mol Microbiol 34:473–484

    Article  CAS  PubMed  Google Scholar 

  • Hein S, Tran H, Steinbuchel A (1998) Synechocystis sp. PCC6803 possesses a two-component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria. Arch Microbiol 170:162–170

    Article  CAS  PubMed  Google Scholar 

  • Iijima H, Watanabe A, Takanobu J et al (2014) rre37 overexpression alters gene expression related to the tricarboxylic acid cycle and pyruvate metabolism in Synechocystis sp. PCC 6803. Sci World J 2014, 921976

    Article  Google Scholar 

  • Ishii A, Hihara Y (2008) An AbrB-like transcriptional regulator, Sll0822, is essential for the activation of nitrogen-regulated genes in Synechocystis sp. PCC 6803. Plant Physiol 148:660–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiura M, Kutsuna S, Aoki S et al (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281:1519–1523

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki H, Williams SB, Kitayama Y et al (2000) A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell 101:223–233

    Article  CAS  PubMed  Google Scholar 

  • Kahlon S, Beeri K, Ohkawa H et al (2006) A putative sensor kinase, Hik31, is involved in the response of Synechocystis sp. strain PCC 6803 to the presence of glucose. Microbiology 152:647–655

    Article  CAS  PubMed  Google Scholar 

  • Klein W, Marahiel MA (2002) Structure-function relationship and regulation of two Bacillus subtilis DNA-binding proteins, HBsu and AbrB. J Mol Microbiol Biotechnol 4:323–329

    CAS  PubMed  Google Scholar 

  • Kucho K, Okamoto K, Tsuchiya Y et al (2005) Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 187:2190–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieman-Hurwitz J, Haimovich M, Shalev-Malul G et al (2009) A cyanobacterial AbrB-like protein affects the apparent photosynthetic affinity for CO2 by modulating low-CO2-induced gene expression. Environ Microbiol 11:927–936

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Yang C (2014) The nitrogen-regulated response regulator NrrA controls cyanophycin synthesis and glycogen catabolism in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 289:2055–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merida A, Candau P, Florencio FJ (1991) Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: effect of ammonium. J Bacteriol 173:4095–4100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muro-Pastor AM, Herrero A, Flores E (2001a) Nitrogen-regulated group 2 sigma factor from Synechocystis sp. strain PCC 6803 involved in survival under nitrogen stress. J Bacteriol 183:1090–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muro-Pastor MI, Reyes JC, Florencio FJ (2001b) Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J Biol Chem 276:38320–38328

    CAS  PubMed  Google Scholar 

  • Muro-Pastor MI, Reyes JC, Florencio FJ (2005) Ammonium assimilation in cyanobacteria. Photosynth Res 83:135–150

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan S, Sherman DM, Shaw I, Sherman LA (2012) Functions of the duplicated hik31 operons in central metabolism and responses to light, dark, and carbon sources in Synechocystis sp. strain PCC 6803. J Bacteriol 194:448–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagarajan S, Srivastava S, Sherman LA (2014) Essential role of the plasmid hik31 operon in regulating central metabolism in the dark in Synechocystis sp. PCC 6803. Mol Microbiol 91:79–97

    Article  CAS  PubMed  Google Scholar 

  • Nakajima T, Kajihata S, Yoshikawa K et al (2014) Integrated metabolic flux and omics analysis of Synechocystis sp. PCC 6803 under mixotrophic and photoheterotrophic conditions. Plant Cell Physiol 55:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Nakaya Y, Iijima H, Takanobu J et al (2015) One day of nitrogen starvation reveals the effect of sigE and rre37 overexpression on the expression of genes related to carbon and nitrogen metabolism in Synechocystis sp. PCC 6803. J Biosci Bioeng 120(2):128–1234

    Article  CAS  PubMed  Google Scholar 

  • Oliveira P, Lindblad P (2008) An AbrB-like protein regulates the expression of the bidirectional hydrogenase in Synechocystis sp. strain PCC 6803. J Bacteriol 190:1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osanai T, Kanesaki Y, Nakano T et al (2005) Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 sigma factor SigE. J Biol Chem 280:30653–30659

    Article  CAS  PubMed  Google Scholar 

  • Osanai T, Imamura S, Asayama M et al (2006) Nitrogen induction of sugar catabolic gene expression in Synechocystis sp. PCC 6803. DNA Res 13:185–195

    Article  CAS  PubMed  Google Scholar 

  • Osanai T, Azuma M, Tanaka K (2007) Sugar catabolism regulated by light- and nitrogen-status in the cyanobacterium Synechocystis sp. PCC 6803. Photochem Photobiol Sci 6:508–514

    Article  CAS  PubMed  Google Scholar 

  • Osanai T, Imashimizu M, Seki A et al (2009) ChlH, the H subunit of the Mg-chelatase, is an anti-sigma factor for SigE in Synechocystis sp. PCC 6803. Proc Natl Acad Sci U S A 106:6860–6865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osanai T, Oikawa A, Azuma M et al (2011) Genetic engineering of group 2 sigma factor SigE widely activates expressions of sugar catabolic genes in Synechocystis species PCC 6803. J Biol Chem 286:30962–30971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osanai T, Kuwahara A, Iijima H et al (2013a) Pleiotropic effect of sigE over-expression on cell morphology, photosynthesis and hydrogen production in Synechocystis sp. PCC 6803. Plant J 76:456–465

    Article  CAS  PubMed  Google Scholar 

  • Osanai T, Numata K, Oikawa A et al (2013b) Increased bioplastics production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis species PCC 6803. DNA Res 20:525–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osanai T, Oikawa A, Numata K et al (2014a) Pathway-level acceleration of glycogen catabolism by a response regulator in the cyanobacterium Synechocystis species PCC 6803. Plant Physiol 164:1831–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osanai T, Oikawa A, Shirai T et al (2014b) Capillary electrophoresis-mass spectrometry reveals the distribution of carbon metabolites during nitrogen starvation in Synechocystis sp. PCC 6803. Environ Microbiol 16:512–524

    Article  CAS  PubMed  Google Scholar 

  • Osanai T, Shirai T, Iijima H et al (2014c) Alteration of cyanobacterial sugar and amino acid metabolism by overexpression hik8, encoding a KaiC-associated histidine kinase. Environ Microbiol. doi:10.1111/1462-2920.12715

    Google Scholar 

  • Singh AK, Sherman LA (2005) Pleiotropic effect of a histidine kinase on carbohydrate metabolism in Synechocystis sp. strain PCC 6803 and its requirement for heterotrophic growth. J Bacteriol 187:2368–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabei Y, Okada K, Tsuzuki M (2007) Sll1330 controls the expression of glycolytic genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 355:1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Uchimiya H, Hihara Y (2008) Difference in metabolite levels between photoautotrophic and photomixotrophic cultures of Synechocystis sp. PCC 6803 examined by capillary electrophoresis electrospray ionization mass spectrometry. J Exp Bot 59:3009–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai N, Nakajima M, Oyama T et al (2006) A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. Proc Natl Acad Sci U S A 103:12109–12114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita J, Nakajima M, Kondo T, Iwasaki H (2005) No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307:251–254

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi Y, Kaniya Y, Kaneko Y, Hihara Y (2011) Physiological roles of the cyAbrB transcriptional regulator pair Sll0822 and Sll0359 in Synechocystis sp. strain PCC 6803. J Bacteriol 193:3702–3709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Hua Q, Shimizu K (2002) Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metab Eng 4:202–216

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa K, Hirasawa T, Ogawa T et al (2013) Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions. Biotechnol J 8:571–580

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology, Japan; by a grant to T.O. by funds from ALCA (Project name “Production of cyanobacterial succinate by the genetic engineering of transcriptional regulators and circadian clocks”) from the Japan Science and Technology Agency, and CREST from the Japan Science and Technology Agency. The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Osanai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Osanai, T., Iijima, H., Hirai, M.Y. (2016). Understanding Sugar Catabolism in Unicellular Cyanobacteria Toward the Application in Biofuel and Biomaterial Production. In: Nakamura, Y., Li-Beisson, Y. (eds) Lipids in Plant and Algae Development. Subcellular Biochemistry, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-25979-6_20

Download citation

Publish with us

Policies and ethics