Skip to main content

Green Leaf Volatiles in Plant Signaling and Response

  • Chapter
  • First Online:
Lipids in Plant and Algae Development

Part of the book series: Subcellular Biochemistry ((SCBI,volume 86))

Abstract

Most ‘green’ plants form green leaf volatiles (GLVs). GLVs are a familiar plant secondary metabolite, but knowledge of their physiological and ecological functions is limited. GLV formation is tightly suppressed when plant tissues are intact, but upon mechanical wounding, herbivore attack, or abiotic stresses, GLVs are formed rapidly, within seconds or minutes. Thus, this may be an important system for defense responses, allowing plants to protect themselves from damage as soon as possible. Because GLV formation in the natural environment is roughly related to the degree of stress in the plant life, sensing the amount of GLVs in the atmosphere might allow plants to recognize their surroundings. Because some plants respond to GLVs, they may communicate with GLVs. GLVs that contain α,β-unsaturated carbonyl groups might activate signaling systems regulated under the redox state of plant cells. Plasma membranes would also be targets of interactions with GLVs. Additionally, the metabolism of GLVs in plant cells after absorption from the atmosphere could also be classified as a plant–plant interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allmann S, Baldwin IT (2010) Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science 329:1075–1078

    Article  CAS  PubMed  Google Scholar 

  • Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defense gene in lima bean leaves. Nature 406:512–515

    Article  CAS  PubMed  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science 311:812–815

    Article  CAS  PubMed  Google Scholar 

  • Bate NJ, Rothstein SJ (1998) C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16:561–569

    Article  CAS  PubMed  Google Scholar 

  • Bate NJ, Sivasankar S, Moxon C, Riley JM, Thompson JE, Rothstein SJ (1998) Molecular characterization of an Arabidopsis gene encoding hydroperoxide lyase, a cytochrome P-450 that is wound inducible. Plant Physiol 117:1393–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaventure G (2014) Lipases and the biosynthesis of free oxylipins in plants. Plant Signal Behav 3:9

    Google Scholar 

  • Bonaventure G, Schuck S, Baldwin IT (2011) Revealing complexity and specificity in the activation of lipase-mediated oxylipin biosynthesis: a specific role of the Nicotiana attenuata GLA1 lipase in the activation of jasmonic acid biosynthesis in leaves and roots. Plant Cell Environ 34:1507–1520

    Article  CAS  PubMed  Google Scholar 

  • Copolovici L, Kännaste A, Pazouki L, Niinemets Ü (2012) Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J Plant Physiol 169:664–672

    Article  CAS  PubMed  Google Scholar 

  • Curtius T, Franzen H (1912) Über die chemischen Bestandteile grüner Pflanzen. Über den Blätteraldehyd. Justus Liebigs Annalen der Chemie 390:89–121

    Article  CAS  Google Scholar 

  • Davoine C, Falletti O, Douki T, Iacazio G, Ennar N, Montillet JL, Triantaphylides C (2006) Adducts of oxylipin electrophiles to glutathione reflect a 13 specificity of the downstream lipoxygenase pathway in the tobacco hypersensitive response. Plant Physiol 140:1484–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, Agrawal AA, Bruin J (2003) Plants talk, but are they deaf? Trends Plant Sci 9:403–405

    Article  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci U S A 101:1781–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farag MA, Fokar M, Abd H, Zhang H, Allen RD, Paré PW (2005) (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta 220:900–909

    Article  CAS  PubMed  Google Scholar 

  • Froehlich JE, Itoh A, Howe GA (2001) Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope. Plant Physiol 125:306–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frost CJ, Mescher MC, Dervinis C, Davis JM, Carlson JE, De Moraes CM (2008) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol 180:722–734

    Article  CAS  PubMed  Google Scholar 

  • Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender J-L (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283:16400–16407

    Article  CAS  PubMed  Google Scholar 

  • Glauser G, Dubugnon L, Mousavi SA, Rudaz S, Wolfender J-L, Farmer EE (2009) Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 284:34506–34513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grechkin AN (2002) Hydroperoxide lyase and divinyl ether synthase. Prostaglandins Other Lipid Mediat 68:457–470

    Article  PubMed  Google Scholar 

  • Grechkin AN, Brühlmann F, Mukhtarova LS, Gogolev YV, Hamberg M (2006) Hydroperoxide lyases (CYP74C and CYP74B) catalyze the hemolytic isomerization of fatty acid hydroperoxides into hemiacetals. Biochim Biophys Acta 1761:1419–1428

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Lion U, Boland W (2008) Defense-inducing volatiles: in search of the active motif. J Chem Ecol 34:601–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higdon A, Diers AR, Oh JY, Landar A, Darley-Usmar VM (2012) Cell signaling by reactive lipid species: new concepts and molecular mechanisms. Biochem J 442:453–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jardine K, Barron-Gafford GA, Norman JP, Abrell L, Monson RK, Meyers KT, Pavao-Zuckerman M, Dontsova K, Kleist E, Werner C, Huxman TE (2012) Green leaf volatiles and oxygenate metabolite emission bursts from mesquite branches following light-dark transitions. Photosynth Res 113:321–333

    Article  CAS  PubMed  Google Scholar 

  • Kako H, Kobayashi Y, Yokogoshi H (2011) Effects of n-hexanal on dopamine release in the striatum of living rats. Eur J Pharmacol 651:77–82

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2005) Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol 46:1093–1102

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2006) ETR1-, JAR1- ad PAD2-dependent signaling pathways are involved in C6-aldehyde-induced defense responses of Arabidopsis. Plant Sci 171:415–423

    Article  CAS  PubMed  Google Scholar 

  • Kissen R, Rossiter JT, Bones AM (2009) The ‘mustard oil bomb’: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8:69–86

    Article  CAS  Google Scholar 

  • Koeduka T, Ishizaki K, Mwenda CM, Hori K, Sasaki-Sekimoto Y, Ohta H, Kohchi T, Matsui K (2015) Biochemical characterization of allene oxide synthases from the liverwort Marchantia polymorpha and green microalgae Klebsormidium flaccidum procides insight into the evolutionary divergence of the plant CYP74 family. Planta 242:1175–1186

    Google Scholar 

  • Kost C, Heil M (2006) Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 94:619–628

    Article  CAS  Google Scholar 

  • Kubigsteltig I, Laudert D, Weiler E (1999) Structure and regulation of Arabidopsis thaliana allene oxide synthase gene. Planta 208:463–471

    Article  CAS  PubMed  Google Scholar 

  • Lee DS, Nioche P, Hamberg M, Raman CS (2008) Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature 455:363–368

    Article  CAS  PubMed  Google Scholar 

  • Mano J (2012) Reactive carbonyl species: their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiol Biochem 59:90–97

    Article  CAS  PubMed  Google Scholar 

  • Mano J, Nagata M, Okamura S, Shiraya T, Mitsui T (2014) Identification of oxidatively modified proteins in salt-stressed Arabidopsis: a carbonyl-targeted proteomics approach. Plant Cell Physiol 55:1233–1244

    Article  CAS  PubMed  Google Scholar 

  • Matsui K (2006) Green leaf volatiles. Hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280

    Article  CAS  PubMed  Google Scholar 

  • Matsui K, Shibutani M, Hase T, Kajiwara T (1996) Bell pepper fruit fatty acid hydroperoxide lyase is a cytochrome P450 (CYP74B). FEBS Lett 394:21–24

    Article  CAS  PubMed  Google Scholar 

  • Matsui K, Sugimoto K, Mano J, Ozawa R, Takabayashi J (2012) Differential metabolisms of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirements. PLoS ONE 7:e36433. doi:10.1371/journal.pone.0036433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mita G, Quarta A, Fasano P, De Paolis A, Di Sansebastiano GP, Perrotta C, Iannacone R, Belfield E, Hughes R, Tsesmetzis N et al (2005) Molecular cloning and characterization of an almond 9-hydroperoxide lyase, a new CYP74 targeted to lipid bodies. J Exp Bot 56:2321–2333

    Article  CAS  PubMed  Google Scholar 

  • Mueller S, Hilbert B, Dueckersjhoff K, Roitsch T, Krischke M, Mueller M, Berger S (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20:768–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami M (2011) Lipid mediators in life science. Exp Anim 60:7–20

    Article  CAS  PubMed  Google Scholar 

  • Mwenda CM, Matsuki A, Nishimura K, Koeduka T, Matsui K (2015) Spatial expression of the Arabidopsis hydroperoxide lyase is controlled differently from that of the allene oxide synthase gene. J Plant Interact 10:1–10

    Article  CAS  Google Scholar 

  • Nakashima A, von Reuss SH, Tasaka H, Nomura M, Mochizuki S, Iijima Y, Aoki K, Shibata D, Boland W, Takabayashi J, Matsui K (2013) Traumatin- and dinortraumatin-containing galactolipids in Arabidopsis: their formation in tissue-disrupted leaves as counterparts of green leaf volatiles. J Biol Chem 288:26078–26088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noordermeer MA, Van Dijken AJ, Smeekens SC, Veldink GA, Vliegenthart JF (2000) Characterization of three cloned and expressed 13-hydroperoxide lyase isoenzymes from alfalfa with unusual N-terminal sequences and different enzyme kinetics. Eur J Biochem 267:2473–2482

    Article  CAS  PubMed  Google Scholar 

  • Park SW, Li W, Viehhauser A, He B, Kim S, Nilsson AK, Andersson MX, Kittle JD, Ambavaram MMR, Luan S, Esker AR, Tholl D, Cimini D, Ellerström M, Coaker G, Mitchell TK, Pereira A, Dietz KJ, Lawrence CB (2013) Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proc Natl Acad Sci U S A 110:9559–9564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paschold A, Halitschke R, Baldwin IT (2006) Using ‘mute’ plants to translate volatile signals. Plant J 45:275–291

    Article  CAS  PubMed  Google Scholar 

  • Phillips DR, Galliard T (1978) Flavor biogenesis: partial purification and properties of a fatty acid hydroperoxide cleaving enzyme from fruits of cucumber. Phytochemistry 17:355–358

    Article  CAS  Google Scholar 

  • Riddiford LM (1967) Trans-2-hexenal: mating stimulant for polyphemus moths. Science 157:139–141

    Article  Google Scholar 

  • Savchenko T, Kolla VA, Wang CQ, Nasafi Z, Hicks DR, Phadungchob B, Chehab WE, Brandizzi F, Froehlich J, Dehesh K (2014) Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol 164:1151–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scala A, Allman S, Mirabella R, Haring MA, Schuurink RC (2013) Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. Int J Mol Sci 14:17781–17911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz J, Brodhun F, Hornung E, Herrfurth C, Stumpe M, Beike AK, Faltin B, Frank W, Reski R, Feussner I (2012) Biosynthesis of allene oxides in Physcomitrella patens. BMC Plant Biol 12:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata Y, Matsui K, Kajiwara T, Hatanaka A (1995) Purification and properties of fatty acid hydroperoxide lyase from green bell pepper fruits. Plant Cell Physiol 36:147–156

    CAS  Google Scholar 

  • Stumpe M, Bode J, Göbel C, Wichard T, Schaaf A, Frank W, Frank M, Reski R, Pohnert G, Feussner I (2006) Biosynthesis of C9-aldehydes in the moss Physcomitrella patens. Biochim Biophys Acta 1761:301–312

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S, Ozawa R, Uefune M, Sasaki R, Alamgir KM, Akitake S et al (2014) Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc Natl Acad Sci U S A 111:7144–7149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, Takamiya K, Shibata D, Kobayashi Y, Ohta H (2005) 12-Oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol 139:1268–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi Y, Hasegawa A, Taninaka A, Mizutani M, Sugimoto Y (2011) NADPH-dependent reductases involved in the detoxification of reactive carbonyls in plants. J Biol Chem 286:6999–7009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi Y, Kunishima M, Mizutani M, Sugimoto Y (2015) Reactive short-chain leaf volatiles act as powerful inducers of abiotic stress-related gene expression. Sci Rep 5:8030. doi:10.1038/srep08030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zebelo A, Matsui K, Ozawa R, Maffei ME (2012) Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication. Plant Sci 196:93–100

    Article  CAS  PubMed  Google Scholar 

  • Zeringue HJ Jr (1992) Effects of C6–C10 alkenals and alkanals on eliciting a defence response in the developing cotton boll. Phytochemistry 31:2305–2308

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was partly supported by a Grant-in-aid for Scientific Research (K.M., 25282234 and 90199729) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Matsui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Matsui, K., Koeduka, T. (2016). Green Leaf Volatiles in Plant Signaling and Response. In: Nakamura, Y., Li-Beisson, Y. (eds) Lipids in Plant and Algae Development. Subcellular Biochemistry, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-25979-6_17

Download citation

Publish with us

Policies and ethics