Skip to main content

Role of Lipid Metabolism in Plant Pollen Exine Development

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 86))

Abstract

Pollen plays important roles in the life cycle of angiosperms plants. It acts as not only a biological protector of male sperms but also a communicator between the male and the female reproductive organs, facilitating pollination and fertilization. Pollen is produced within the anther, and covered by the specialized outer envelope, pollen wall. Although the morphology of pollen varies among different plant species, the pollen wall is mainly comprised of three layers: the pollen coat, the outer exine layer, and the inner intine layer. Except the intine layer, the other two layers are basically of lipidic nature. Particularly, the outer pollen wall layer, the exine, is a highly resistant biopolymer of phenylpropanoid and lipidic monomers covalently coupled by ether and ester linkages. The precise molecular mechanisms underlying pollen coat formation and exine patterning remain largely elusive. Herein, we summarize the current genetic, phenotypic and biochemical studies regarding to the pollen exine development and underlying molecular regulatory mechanisms mainly obtained from monocot rice (Oryza sativa) and dicot Arabidopsis thaliana, aiming to extend our understandings of plant male reproductive biology. Genes, enzymes/proteins and regulatory factors that appear to play conserved and diversified roles in lipid biosynthesis, transportation and modification during pollen exine formation, were highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarts M, Hodge R, Kalantidis K et al (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12(3):615–623

    Article  CAS  PubMed  Google Scholar 

  • Ahlers F, Bubert H, Steuernagel S et al (2000) The nature of oxygen in sporopollenin from the pollen of Typha angustifolia L. Z Naturforsch C 55(3–4):129–136

    CAS  PubMed  Google Scholar 

  • Ariizumi T, Toriyama K (2007) Pollen exine pattern formation is dependent on three major developmental processes in Arabidopsis thaliana. Int J Plant Dev Biol 1:106–115

    Google Scholar 

  • Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437–460

    Article  CAS  PubMed  Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K et al (2003) A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Mol Biol 53(1–2):107–116

    Article  CAS  PubMed  Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K et al (2004) Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J 39(2):170–181

    Article  CAS  PubMed  Google Scholar 

  • Aya K, Ueguchi-Tanaka M, Kondo M et al (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21(5):1453–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedinger P (1992) The remarkable biology of pollen. Plant Cell 4(8):879–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beerling D (2007) The emerald planet: how plants changed earth’s history. Oxford University Press, New York

    Google Scholar 

  • Blackmore S, Wortley A, Skvarla J et al (2007) Pollen wall development in flowering plants. New Phytol 174(3):483–498. doi:10.1111/j.1469-8137.2007.02060.x

    Article  CAS  PubMed  Google Scholar 

  • Bourdenx B, Bernard A, Domergue F et al (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156(1):29–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AP, Affleck V, Fawcett T et al (2006) Tandem affinity purification tagging of fatty acid biosynthetic enzymes in Synechocystis sp. PCC6803 and Arabidopsis thaliana. J Exp Bot 57(7):1563–1571

    Article  CAS  PubMed  Google Scholar 

  • Bubert H, Lambert J, Steuernagel S et al (2002) Continuous decomposition of sporopollenin from pollen of Typha angustifolia L. by acidic methanolysis. Z Naturforsch C 57(11–12):1035–1041

    CAS  PubMed  Google Scholar 

  • Chang HS, Zhang C, Chang YH et al (2012) No primexine and plasma membrane undulation is essential for primexine deposition and plasma membrane undulation during microsporogenesis in Arabidopsis. Plant Physiol 158(1):264–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chen G, Hao X et al (2011a) CaMF2, an anther-specific lipid transfer protein (LTP) gene, affects pollen development in Capsicum annuum L. Plant Sci 181(4):439–448

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Yu XH, Zhang K et al (2011b) Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol 157(2):842–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Jin JY, Choi S et al (2011) An ABCG/WBC‐type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. Plant J 65(2):181–193

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Ohyama K, Kim Y-Y et al (2014) The role of Arabidopsis ABCG9 and ABCG31 ATP binding cassette transporters in pollen fitness and the deposition of steryl glycosides on the pollen coat. Plant Cell 26(1):310–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colpitts CC, Kim SS, Posehn SE et al (2011) PpASCL, a moss ortholog of anther‐specific chalcone synthase‐like enzymes, is a hydroxyalkylpyrone synthase involved in an evolutionarily conserved sporopollenin biosynthesis pathway. New Phytol 192(4):855–868

    Article  CAS  PubMed  Google Scholar 

  • Cronk Q, Cronk Q (2009) The molecular organography of plants. Oxford University Press, Oxford

    Book  Google Scholar 

  • de Azevedo Souza C, Kim SS, Koch S et al (2009) A novel fatty Acyl-CoA synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell 21(2):507–525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobritsa AA, Shrestha J, Morant M et al (2009) CYP704B1 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 151(2):574–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobritsa A, Lei Z, Nishikawa S et al (2010) LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant Physiol 153(3):937–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Hong Z, Sivaramakrishnan M et al (2005) Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J 42(3):315–328

    Article  CAS  PubMed  Google Scholar 

  • Dou XY, Yang KZ, Zhang Y et al (2011) WBC27, an adenosine tri‐phosphate‐binding cassette protein, controls pollen wall formation and patterning in Arabidopsis. J Integr Plant Biol 53(1):74–88

    Article  CAS  PubMed  Google Scholar 

  • Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16(Suppl):S84–S97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Z, Yu J, Cheng X et al (2014) The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. Plant Cell 26(4):1512–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabarayeva NI, Grigorjeva VV (2004) Exine development in Encephalartos altensteinii (Cycadaceae): ultrastructure, substructure and the modes of sporopollenin accumulation. Rev Palaeobot Palynol 132(3–4):175–193

    Article  Google Scholar 

  • Gabarayeva N, Grigorjeva V, Rowley JR et al (2009) Sporoderm development in Trevesia burckii (Araliaceae). I. Tetrad period: further evidence for the participation of self-assembly processes. Rev Palaeobot Palynol 156(1–2):211–232

    Article  Google Scholar 

  • Grienenberger E, Kim SS, Lallemand B et al (2010) Analysis of TETRAKETIDE alpha-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. Plant Cell 22(12):4067–4083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu J, Zhu J, Yu Y et al (2014) DYT1 directly regulates the expression of TDF1 for tapetum development and pollen wall formation in Arabidopsis. Plant J 80(6):1005–1013

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Huang X, Zhu J et al (2008) RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol 147(2):852–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunning B, Steer M (1996) Plant cell biology: structure and function. Jones & Bartlett Learning, Burlington

    Google Scholar 

  • Haerizadeh F, Wong C, Bhalla P et al (2009) Genomic expression profiling of mature soybean (Glycine max) pollen. BMC Plant Biol 9:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hafidh S, Breznenová K, Růžička P et al (2012) Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biol 12(1):24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heslop-Harrison J (1979) Pollen wall as adaptive systems. Ann Mo Bot Gard 66(4):813–829

    Article  Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132(2):640–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5(11):R85

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu L, Tan H, Liang W et al (2010) The Post-meiotic Deficient Anther1 (PDA1) gene is required for post-meiotic anther development in rice. J Genet Genomics 37(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Chen T, Huang A (2013a) Abundant type III lipid transfer proteins in Arabidopsis tapetum are secreted to the locule and become a constituent of the pollen exine. Plant Physiol 163:1218–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Niu J, Sun M et al (2013b) CYCLIN-DEPENDENT KINASE G1 is associated with the spliceosome to regulate CALLOSE SYNTHASE5 splicing and pollen wall formation in Arabidopsis. Plant Cell 25(2):637–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito T, Shinozaki K (2002) The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol 43(11):1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Nagata N, Yoshiba Y et al (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell 19(11):3549–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong H, Kang J, Zhao M et al (2014) Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers. J Exp Bot 65(22):6693–6709, eru389

    Article  PubMed  PubMed Central  Google Scholar 

  • Jessen D, Olbrich A, Knüfer J et al (2011) Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. Plant J 68(4):715–726

    Article  CAS  PubMed  Google Scholar 

  • Ji C, Li H, Chen L et al (2013) A novel rice bHLH transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and pollen development. Mol Plant 6(5):1715–1718

    Article  CAS  PubMed  Google Scholar 

  • Johnston M, Luethy M, Miernyk J et al (1997) Cloning and molecular analyses of the Arabidopsis thaliana plastid pyruvate dehydrogenase subunits. Biochim Biophys Acta 1321(3):200–206

    Article  CAS  PubMed  Google Scholar 

  • Jung K, Han M, Lee Y et al (2005) Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 17(10):2705–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung K, Han M, Lee Y et al (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18(11):3015–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kader J (1996) Lipid-transfer proteins in plants. Ann Rev Plant Biol 47(1):627–654

    Article  CAS  Google Scholar 

  • Kaneko M, Inukai Y, Ueguchi-Tanaka M et al (2004) Loss-of-function mutations of the rice GAMYB gene impair α-amylase expression in aleurone and flower development. Plant Cell 16(1):33–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Park J, Choi H, et al (2011) Plant ABC transporters. The Arabidopsis Book. No. 9. Am Soc Plant Biol. doi:10.1199/tab.0153

    Google Scholar 

  • Kapoor S, Kobayashi A, Takatsuji H (2002) Silencing of the tapetum specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in Petunia. Plant Cell 14:2353–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelliher T, Walbot V (2011) Emergence and patterning of the five cell types of the Zea mays anther locule. Dev Biol 350(1):32–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenrick P, Crane P (1997) The origin and early diversification of land plants. A cladistic study. Smithsonian Institute Press, Washington, DC

    Google Scholar 

  • Kim SS, Douglas CJ (2013) Sporopollenin monomer biosynthesis in Arabidopsis. J Plant Biol 56(1):1–6

    Article  CAS  Google Scholar 

  • Kim S, Grienenberger E, Lallemand B et al (2010) LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl alpha-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. Plant Cell 22(12):4045–4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knox R, Heslop-Harrison J (1971) Pollen-wall proteins: the fate of intine-held antigens on the stigma in compatible and incompatible pollinations of Phalaris tuberosa L. J Cell Sci 9(1):239–251

    CAS  PubMed  Google Scholar 

  • Ko S, Li M, Ku M et al (2014) The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice. Plant Cell 26(6):2486–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi T, Shinohara K, Yamada K et al (1996) Acetyl-CoA carboxylase in higher plants: most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol 37(2):117–122

    Article  CAS  PubMed  Google Scholar 

  • Kunst L, Samuels A (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42(1):51–80

    Article  CAS  PubMed  Google Scholar 

  • Kuromori T, Miyaji T, Yabuuchi H et al (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. PNAS 107(5):2361–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lallemand B, Erhardt M, Heitz T et al (2013) Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. Plant Physiol 162(2):616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang V, Usadel B, Obermeyer G (2015) De novo sequencing and analysis of the lily pollen transcriptome: an open access data source for an orphan plant species. Plant Mol Biol 87(1–2):69–80

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Jung KH, An G et al (2004) Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene trap system. Plant Mol Biol l54:755–765

    Article  Google Scholar 

  • Li H, Zhang D (2010) Biosynthesis of anther cuticle and pollen exine in rice. Plant Signal Behav 5(9):1121–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Zhang D, Liu H et al (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18(11):2999–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Pinot F, Sauveplane V et al (2010) CYP704B2 catalyzing the ω-hydroxylation of fatty acids is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22:173–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Yuan Z, Vizcay-Barrena G et al (2011) PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol 156(2):615–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Li Y, Song S et al (2015) An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development. Planta 241(1):157–166

    Article  CAS  PubMed  Google Scholar 

  • Liang M, Zhang P, Shu X et al (2013) Characterization of pollen by MALDI-TOF lipid profiling. Int J Mass Spectrom 334:13–18

    Article  CAS  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F et al (2010) Acyl-lipid metabolism. Arabidopsis Book Am Soc Plant Biologist 8:e0133

    Article  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F et al (2013) Acyl-lipid metabolism. The Arabidopsis Book, No.11. Am Soc Plant Biol. doi:10.1199/tab.0133

    Google Scholar 

  • Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu. Rev. Plant Biol 56:393–434

    Article  CAS  Google Scholar 

  • Menand B, Yi K, Jouannic S et al (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316(5830):1477–1480

    Article  CAS  PubMed  Google Scholar 

  • Morant M, Jorgensen K, Schaller H et al (2007) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19(5):1473–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murgia M, Charzynska M, Rougier M et al (1991) Secretory tapetum of Brassica oleracea L.: polarity and ultrastructural features. Sex. Plant Reprod 4:28–35

    Google Scholar 

  • Murphy D (2006) The extracellular pollen coat in members of the Brassicaceae: composition, biosynthesis, and functions in pollination. Protoplasma 228(1–3):31–39

    Article  CAS  PubMed  Google Scholar 

  • Niu B, He R, He M et al (2013a) The ATP-binding cassette transporter OsABCG15 is required for anther development and pollen fertility in rice. J Integr Plant Biol 55:710–720

    Article  CAS  PubMed  Google Scholar 

  • Niu N, Liang W, Yang X et al (2013b) EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun 4:1445

    Article  PubMed  CAS  Google Scholar 

  • Ohlrogge J, Kuhn D, Stumpf P (1979) Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. PNAS 76(3):1194–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen H, Makaroff C (1995) Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma 185(1–2):7–21

    Article  Google Scholar 

  • Pacini E, Hesse M (1984) The tapetum: its form, function, and possible phylogeny in Embryophyta. Plant Syst Evol 149(3–4):155–185

    Google Scholar 

  • Paxson-Sowders D, Owen H, Makaroff C (1997) A comparative ultrastructural analysis of exine pattern development in wild-type Arabidopsis and a mutant defective in pattern formation. Protoplasma 198(1–2):53–65

    Article  Google Scholar 

  • Paxson-Sowders D, Dodrill C, Owen H et al (2001) DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiol 127(4):1739–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phan H, Iacuone S, Li S et al (2011) The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell 23(6):2209–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pidkowich M, Nguyen H, Heilmann I et al (2007) Modulating seed β-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. PNAS 104(11):4742–4747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piffanelli P, Ross J, Murphy D (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11(2):65–80

    Article  CAS  Google Scholar 

  • Poethig RS (1987) Clonal analysis of cell lineage patterns in plant development. Am J Bot 74(4):581–594

    Article  Google Scholar 

  • Qin P, Tu B, Wang Y et al (2013) ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant Cell Physiol 54(1):138–154

    Article  CAS  PubMed  Google Scholar 

  • Quatrano R, McDaniel S, Khandelwal A et al (2007) Physcomitrella patens: mosses enter the genomic age. Curr Opin Plant Biol 10(2):182–189

    Article  CAS  PubMed  Google Scholar 

  • Quilichini T, Friedmann M, Samuels A et al (2010) ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis. Plant Physiol 154(2):678–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quilichini T, Grienenberger E, Douglas CJ (2014) The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry. doi:10.1016/j.phytochem.2014.05.002

    PubMed  Google Scholar 

  • Rensing S, Lang D, Zimmer A et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319(5859):64–69

    Article  CAS  PubMed  Google Scholar 

  • Scott R (1994) Pollen exine-the sporopollenin enigma and the physics of pattern. In: Seminar series-society for experimental biology. Cambridge University Press, pp 49–49

    Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16(Suppl):S46–S60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw G (1970) Chemistry of sporopollenin. In: Symposium on sporopollenin

    Google Scholar 

  • Shi J, Tan H, Yu XH et al (2011) Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell 23(6):2225–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivanna K, Cresti M, Ciampolini F et al (1997) Pollen development and pollen-pistil interaction. In: Shivann KR, Sawhney VK (eds) Pollen biotechnology for crop production and improvement. Cambridge University Press, Cambridge, pp 15–39

    Chapter  Google Scholar 

  • Song J, Cao J, Wang C (2013) BcMF11, a novel non-coding RNA gene from Brassica campestris, is required for pollen development and male fertility. Plant Cell Rep 32(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Sorensen A, Krober S, Unte U et al (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J Cell Mol Biol 33(2):413–423

    Article  CAS  Google Scholar 

  • Sun M, Huang X, Yang J et al (2013) Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reprod 26(2):83–91

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Chu H, Yip W et al (2009) An anther‐specific dihydroflavonol 4‐reductase‐like gene (DRL1) is essential for male fertility in Arabidopsis. New Phytol 181(3):576–587

    Article  CAS  PubMed  Google Scholar 

  • Varnier A, Mazeyrat-Gourbeyre F, Sangwan R et al (2005) Programmed cell death progressively models the development of anther sporophytic tissues from the tapetum and is triggered in pollen grains during maturation. J Struct Biol 152(2):118–128

    Article  CAS  PubMed  Google Scholar 

  • Verma DP, Hong Z (2001) Plant callose synthase complexes. Plant Mol Biol 47(6):693–701

    Article  CAS  PubMed  Google Scholar 

  • Wall D (1962) Evidence from recent plankton regarding the biological affinities of Tasmanites Newton 1875 and Leiosphaeridia Eisenack 1958. Geol Mag 99(04):353–362

    Article  Google Scholar 

  • Wallace S, Fleming A, Wellman CH et al (2011) Evolutionary development of the plant and spore wall. AoB Plants plr027. doi:10.1093/aobpla/plr027

  • Wallace S, Chater C, Kamisugi Y et al (2015) Conservation of Male Sterility 2 function during spore and pollen wall development supports an evolutionarily early recruitment of a core component in the sporopollenin biosynthetic pathway. New Phytol 205(1):390–401

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Xu W, Deng Z et al (2010) Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 11(1):338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wellman C (2004) Origin, function and development of the spore wall in early land plants. In: Hemsley AR, Poole I (eds) The evolution of plant physiology. Elsevier Academic Press, pp 43–64

    Google Scholar 

  • Wilmesmeier S, Wiermann R (1995) Influence of EPTC (S-Ethyl-Dipropyl-Thiocarbamate) on the composition of surface waxes and sporopollenin structure in Zea mays. J Plant Physiol 146(1):22–28

    Article  CAS  Google Scholar 

  • Wilson Z, Zhang D (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60(5):1479–1492

    Article  CAS  PubMed  Google Scholar 

  • Wilson Z, Morroll S, Dawson J et al (2001) The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J Cell Mol Biol 28(1):27–39

    Article  CAS  Google Scholar 

  • Worrall D, Hird DL, Hodge R et al (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4(7):759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Guan Y, Wu Z et al (2014) OsABCG15 encodes a membrane protein that plays an important role in anther cuticle and pollen exine formation in rice. Plant Cell Rep 33:1881–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Cai G, Gong F et al (2015) Proteome profiling of maize pollen coats reveals novel protein components. Plant Mol Biol Rep 33:975–986

    Article  CAS  Google Scholar 

  • Xu J, Yang C, Yuan Z et al (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22(1):91–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Ding Z, Vizcay-Barrena G et al (2014a) ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell 26(4):1544–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Iacuone S, Li S et al (2014b) MYB80 homologues in Arabidopsis, cotton and Brassica: regulation and functional conservation in tapetal and pollen development. BMC Plant Biol 14(1):278

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav V, Molina I, Ranathunge K et al (2014) ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis. Plant Cell 26:3569–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Vizcay-Barrena G, Conner K et al (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19(11):3530–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Tian L, Sun MX et al (2013) AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant Physiol 162(2):720–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Wu D, Shi J et al (2014a) Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Biol 56(10):979–994

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Dong C, Yu J et al (2014b) Cysteine Protease 51 (CP51), an anther-specific cysteine protease gene, is essential for pollen exine formation in Arabidopsis. Plant Cell Tissue Organ Cult 119(2):383–397

    Article  CAS  Google Scholar 

  • Yeats TH, Rose JK (2008) The biochemistry and biology of extracellular plant lipid‐transfer proteins (LTPs). Protein Sci 17(2):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi B, Zeng F, Lei S et al (2010) Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J Cell Mol Biol 63(6):925–938

    Article  CAS  Google Scholar 

  • Zhang D, Li H (2014) Exine export in pollen. In: Plant ABC transporters. Springer International Publishing, pp 49–62

    Google Scholar 

  • Zhang D, Yang L (2014) Specification of tapetum and microsporocyte cells within the anther. Curr Opin Plant Biol 17C:49–55

    Article  CAS  Google Scholar 

  • Zhang Z, Zhu J, Gao J et al (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52(3):528–538

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Liang W, Yuan Z et al (2008) Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1(4):599–610

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Liang W, Yin C et al (2010) OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol 154(1):149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Luo X, Zhu L (2011) Cytological analysis and genetic control of rice anther development. J Genet Genomics 38(9):379–390

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Liu D, Lv X et al (2014) The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. Plant Cell 26(7):2939–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Shi J, Zhao G et al (2013) Post-meiotic deficient anther1 (PDA1) encodes an ABC transporter required for the development of anther cuticle and pollen exine in rice. J Plant Biol 56(1):59–68

    Article  CAS  Google Scholar 

  • Zinkl G, Zwiebel B, Grier D et al (1999) Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by lipophilic molecules in the pollen exine. Development 126(23):5431–5440

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dabing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, D., Shi, J., Yang, X. (2016). Role of Lipid Metabolism in Plant Pollen Exine Development. In: Nakamura, Y., Li-Beisson, Y. (eds) Lipids in Plant and Algae Development. Subcellular Biochemistry, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-25979-6_13

Download citation

Publish with us

Policies and ethics