Skip to main content

Sex Steroids and Aging Bone

  • Chapter
  • First Online:
Osteoporosis in Older Persons
  • 1104 Accesses

Abstract

Sex steroid hormones decline with increasing age in both men and women and this decline may contribute to important sequels of aging including osteoporosis. Earlier studies of sex hormones were limited by use of assays that lacked sufficient sensitivity especially for measuring very low levels of estradiol (E2) in older women. E2 plays a key role in the maintenance of skeletal integrity in both men and women. Men and women with lower E2 have low bone mineral density, experience faster rates of bone loss and have fractures. The relationship of testosterone to skeletal health is less clear. Most studies show that higher sex hormone binding globulin have a higher risk of fractures. However, a combination of sex hormones and other biomarkers may be optimal in identifying effects on bone health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riggs BL, Khosla S, Melton 3rd LJ. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res. 1998;13(5):763–73.

    Article  CAS  PubMed  Google Scholar 

  2. Sowers MR, Jannausch M, McConnell D, et al. Hormone predictors of bone mineral density changes during the menopausal transition. J Clin Endocrinol Metab. 2006;91(4):1261–7.

    Article  CAS  PubMed  Google Scholar 

  3. Lee JS, Ettinger B, Stanczyk FZ, et al. Comparison of methods to measure low serum estradiol levels in postmenopausal women. J Clin Endocrinol Metab. 2006;91(10):3791–7.

    Google Scholar 

  4. Thienpont LM, De Leenheer AP. Efforts by industry toward standardization of serum estradiol-17 beta measurements. Clin Chem. 1998;44(3):671–4.

    CAS  PubMed  Google Scholar 

  5. Taieb J, Mathian B, Millot F, et al. Testosterone measured by 10 immunoassays and by isotope-dilution gas chromatography-mass spectrometry in sera from 116 men, women, and children. Clin Chem. 2003;49(8):1381–95.

    Article  CAS  PubMed  Google Scholar 

  6. Siekmann L. Determination of steroid hormones by the use of isotope dilution--mass spectrometry: a definitive method in clinical chemistry. J Steroid Biochem. 1979;11(1A):117–23.

    Article  CAS  PubMed  Google Scholar 

  7. Lawson AM, Gaskell SJ, Hjelm M. International Federation of Clinical Chemistry (IFCC), Office for Reference Methods and Materials (ORMM). Methodological aspects on quantitative mass spectrometry used for accuracy control in clinical chemistry. J Clin Chem Clin Biochem. 1985;23(7):433–41.

    CAS  PubMed  Google Scholar 

  8. Khosla S, Amin S, Singh RJ, Atkinson EJ, Melton 3rd LJ, Riggs BL. Comparison of sex steroid measurements in men by immunoassay versus mass spectroscopy and relationships with cortical and trabecular volumetric bone mineral density. Osteoporos Int. 2008;19(10):1465–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ohlsson C, Nilsson ME, Tivesten A, et al. Comparisons of immunoassay and mass spectrometry measurements of serum estradiol levels and their influence on clinical association studies in men. J Clin Endocrinol Metab. 2013;98(6):E1097–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Norman A, Litwack G. Steroid hormones: chemistry, biosynthesis, and metabolism. In: Hormones. 2nd ed. San Diego: Academic; 1997. p. 49–85.

    Chapter  Google Scholar 

  11. Khosla S, Riggs BL, Robb RA, et al. Relationship of volumetric bone density and structural parameters at different skeletal sites to sex steroid levels in women. J Clin Endocrinol Metab. 2005;90(9):5096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khosla S, Melton 3rd LJ, Robb RA, et al. Relationship of volumetric BMD and structural parameters at different skeletal sites to sex steroid levels in men. J Bone Miner Res. 2005;20(5):730–40.

    Article  PubMed  Google Scholar 

  13. Orwoll E, Lambert LC, Marshall LM, et al. Testosterone and estradiol among older men. J Clin Endocrinol Metab. 2006;91(4):1336–44.

    Article  CAS  PubMed  Google Scholar 

  14. Cauley JA, Gutai JP, Sandler RB, LaPorte RE, Kuller LH, Sashin D. The relationship of endogenous estrogen to bone density and bone area in normal postmenopausal women. Am J Epidemiol. 1986;124(5):752–61.

    CAS  PubMed  Google Scholar 

  15. Khosla S, Melton 3rd LJ, Atkinson EJ, O'Fallon WM, Klee GG, Riggs BL. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab. 1998;83(7):2266–74.

    CAS  PubMed  Google Scholar 

  16. Greendale GA, Edelstein S, Barrett-Connor E. Endogenous sex steroids and bone mineral density in older women and men: the Rancho Bernardo Study. J Bone Miner Res. 1997;12(11):1833–43.

    Article  CAS  PubMed  Google Scholar 

  17. Ettinger B, Pressman A, Sklarin P, Bauer DC, Cauley JA, Cummings SR. Associations between low levels of serum estradiol, bone density, and fractures among elderly women: the study of osteoporotic fractures. J Clin Endocrinol Metab. 1998;83(7):2239–43.

    CAS  PubMed  Google Scholar 

  18. Murphy S, Khaw KT, Sneyd MJ, Compston JE. Endogenous sex hormones and bone mineral density among community-based postmenopausal women. Postgrad Med J. 1992;68(805):908–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lambrinoudaki I, Christodoulakos G, Aravantinos L, et al. Endogenous sex steroids and bone mineral density in healthy Greek postmenopausal women. J Bone Miner Metab. 2006;24(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  20. Tok EC, Ertunc D, Oz U, Camdeviren H, Ozdemir G, Dilek S. The effect of circulating androgens on bone mineral density in postmenopausal women. Maturitas. 2004;48(3):235–42.

    Article  CAS  PubMed  Google Scholar 

  21. Rapuri PB, Gallagher JC, Haynatzki G. Endogenous levels of serum estradiol and sex hormone binding globulin determine bone mineral density, bone remodeling, the rate of bone loss, and response to treatment with estrogen in elderly women. J Clin Endocrinol Metab. 2004;89(10):4954–62.

    Article  CAS  PubMed  Google Scholar 

  22. Bagur A, Oliveri B, Mautalen C, et al. Low levels of endogenous estradiol protect bone mineral density in young postmenopausal women. Climacteric. 2004;7(2):181–8.

    Article  CAS  PubMed  Google Scholar 

  23. Rogers A, Saleh G, Hannon RA, Greenfield D, Eastell R. Circulating estradiol and osteoprotegerin as determinants of bone turnover and bone density in postmenopausal women. J Clin Endocrinol Metab. 2002;87(10):4470–5.

    Article  CAS  PubMed  Google Scholar 

  24. Sowers MR, Zheng H, Jannausch ML, et al. Amount of bone loss in relation to time around the final menstrual period and follicle-stimulating hormone staging of the transmenopause. J Clin Endocrinol Metab. 2010;95(5):2155–62.

    Google Scholar 

  25. Greendale GA, Sowers MF, Han W, et al. Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: Results from the Study of Women's Health Across the Nation (SWAN). J Bone Miner Res. 2012;27(1):111–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Crandall CJ, Tseng CH, Karlamangla AS, et al. Serum sex steroid levels and longitudinal changes in bone density in relation to the final menstrual period. J Clin Endocrinol Metab. 2013;98(4):E654–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Recker R, Lappe J, Davies KM, Heaney R. Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J Bone Miner Res. 2004;19(10):1628–33.

    Article  PubMed  Google Scholar 

  28. Sun L, Peng Y, Sharrow AC, et al. FSH directly regulates bone mass. Cell. 2006;125(2):247–60.

    Article  CAS  PubMed  Google Scholar 

  29. Gao J, Tiwari-Pandey R, Samadfam R, et al. Altered ovarian function affects skeletal homeostasis independent of the action of follicle-stimulating hormone. Endocrinology. 2007;148(6):2613–21.

    Article  CAS  PubMed  Google Scholar 

  30. Drake MT, McCready LK, Hoey KA, Atkinson EJ, Khosla S. Effects of suppression of follicle-stimulating hormone secretion on bone resorption markers in postmenopausal women. J Clin Endocrinol Metab. 2010;95(11):5063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Slemenda C, Longcope C, Peacock M, Hui S, Johnston CC. Sex steroids, bone mass, and bone loss. A prospective study of pre-, peri-, and postmenopausal women. J Clin Invest. 1996;97(1):14–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stone K, Bauer DC, Black DM, Sklarin P, Ensrud KE, Cummings SR. Hormonal predictors of bone loss in elderly women: a prospective study. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1998;13(7):1167–74.

    Article  CAS  PubMed  Google Scholar 

  33. Yoshimura N, Kasamatsu T, Sakata K, Hashimoto T, Cooper C. The relationship between endogenous estrogen, sex hormone-binding globulin, and bone loss in female residents of a rural Japanese community: the Taiji Study. J Bone Miner Metab. 2002;20(5):303–10.

    Article  CAS  PubMed  Google Scholar 

  34. Guthrie JR, Lehert P, Dennerstein L, Burger HG, Ebeling PR, Wark JD. The relative effect of endogenous estradiol and androgens on menopausal bone loss: a longitudinal study. Osteoporos Int. 2004;15(11):881–6.

    Article  CAS  PubMed  Google Scholar 

  35. Keen RW, Nguyen T, Sobnack R, Perry LA, Thompson PW, Spector TD. Can biochemical markers predict bone loss at the hip and spine?: a 4-year prospective study of 141 early postmenopausal women. Osteoporos Int. 1996;6(5):399–406.

    Article  CAS  PubMed  Google Scholar 

  36. Hui SL, Perkins AJ, Zhou L, et al. Bone loss at the femoral neck in premenopausal white women: effects of weight change and sex-hormone levels. J Clin Endocrinol Metab. 2002;87(4):1539–43.

    Article  CAS  PubMed  Google Scholar 

  37. Rannevik G, Jeppsson S, Johnell O, Bjerre B, Laurell-Borulf Y, Svanberg L. A longitudinal study of the perimenopausal transition: altered profiles of steroid and pituitary hormones, SHBG and bone mineral density. Maturitas. 1995;21(2):103–13.

    Article  CAS  PubMed  Google Scholar 

  38. Khosla S, Bilezikian JP. The role of estrogens in men and androgens in women. Endocrinol Metab Clin North Am. 2003;32(1):195–218.

    Article  CAS  PubMed  Google Scholar 

  39. Smith EP, Boyd J, Frank GR, et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med. 1994;331(16):1056–61.

    Article  CAS  PubMed  Google Scholar 

  40. Morishima A, Grumbach MM, Simpson ER, Fisher C, Qin K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab. 1995;80(12):3689–98.

    CAS  PubMed  Google Scholar 

  41. Carani C, Qin K, Simoni M, et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med. 1997;337(2):91–5.

    Article  CAS  PubMed  Google Scholar 

  42. Center JR, Nguyen TV, Sambrook PN, Eisman JA. Hormonal and biochemical parameters in the determination of osteoporosis in elderly men. J Clin Endocrinol Metab. 1999;84(10):3626–35.

    CAS  PubMed  Google Scholar 

  43. Szulc P, Hofbauer LC, Heufelder AE, Roth S, Delmas PD. Osteoprotegerin serum levels in men: correlation with age, estrogen, and testosterone status. J Clin Endocrinol Metab. 2001;86(7):3162–5.

    CAS  PubMed  Google Scholar 

  44. van den Beld AW, de Jong FH, Grobbee DE, Pols HA, Lamberts SW. Measures of bioavailable serum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men. J Clin Endocrinol Metab. 2000;85(9):3276–82.

    PubMed  Google Scholar 

  45. Ravaglia G, Forti P, Maioli F, et al. Body composition, sex steroids, IGF-1, and bone mineral status in aging men. J Gerontol A Biol Sci Med Sci. 2000;55(9):M516–21.

    Article  CAS  PubMed  Google Scholar 

  46. Amin S, Zhang Y, Felson DT, et al. Estradiol, testosterone, and the risk for hip fractures in elderly men from the Framingham Study. Am J Med. 2006;119(5):426–33.

    Google Scholar 

  47. Slemenda CW, Longcope C, Zhou L, Hui SL, Peacock M, Johnston CC. Sex steroids and bone mass in older men. Positive associations with serum estrogens and negative associations with androgens. J Clin Invest. 1997;100(7):1755–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ackerman KE, Skrinar GS, Medvedova E, Misra M, Miller KK. Estradiol levels predict bone mineral density in male collegiate athletes: a pilot study. Clin Endocrinol (Oxf). 2012;76(3):339–45.

    Article  CAS  Google Scholar 

  49. Martinez Diaz-Guerra G, Hawkins F, Rapado A, Ruiz Diaz MA, Diaz-Curiel M. Hormonal and anthropometric predictors of bone mass in healthy elderly men: major effect of sex hormone binding globulin, parathyroid hormone and body weight. Osteoporos Int. 2001;12(3):178–84.

    Article  CAS  PubMed  Google Scholar 

  50. Rapado A, Hawkins F, Sobrinho L, et al. Bone mineral density and androgen levels in elderly males. Calcif Tissue Int. 1999;65(6):417–21.

    Article  CAS  PubMed  Google Scholar 

  51. Fink HA, Ewing SK, Ensrud KE, et al. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab. 2006;91(10):3908–15.

    Article  CAS  PubMed  Google Scholar 

  52. Falahati-Nini A, Riggs BL, Atkinson EJ, O'Fallon WM, Eastell R, Khosla S. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest. 2000;106(12):1553–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Araujo AB, Travison TG, Leder BZ, McKinlay JB. Correlations between serum testosterone, estradiol, and sex hormone-binding globulin and bone mineral density in a diverse sample of men. J Clin Endocrinol Metab. 2008;93(6):2135–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Paller CJ, Shiels MS, Rohrmann S, et al. Relationship of sex steroid hormones with bone mineral density (BMD) in a nationally representative sample of men. Clin Endocrinol (Oxf). 2009;70(1):26–34.

    Article  CAS  Google Scholar 

  55. Khosla S, Melton 3rd LJ, Atkinson EJ, O'Fallon WM. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab. 2001;86(8):3555–61.

    Article  CAS  PubMed  Google Scholar 

  56. Gennari L, Merlotti D, Martini G, et al. Longitudinal association between sex hormone levels, bone loss, and bone turnover in elderly men. J Clin Endocrinol Metab. 2003;88(11):5327–33.

    Article  CAS  PubMed  Google Scholar 

  57. Van Pottelbergh I, Goemaere S, Kaufman JM. Bioavailable estradiol and an aromatase gene polymorphism are determinants of bone mineral density changes in men over 70 years of age. J Clin Endocrinol Metab. 2003;88(7):3075–81.

    Article  PubMed  CAS  Google Scholar 

  58. Vanbillemont G, Lapauw B, Bogaert V, et al. Sex hormone-binding globulin as an independent determinant of cortical bone status in men at the age of peak bone mass. J Clin Endocrinol Metab. 2010;95(4):1579–86.

    Article  CAS  PubMed  Google Scholar 

  59. Cauley JA, Ewing SK, Taylor BC, et al. Sex steroid hormones in older men: longitudinal associations with 4.5-year change in hip bone mineral density--the osteoporotic fractures in men study. J Clin Endocrinol Metab. 2010;95(9):4314–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mellstrom D, Vandenput L, Mallmin H, et al. Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J Bone Miner Res. 2008;23(10):1552–60.

    Article  PubMed  Google Scholar 

  61. LeBlanc ES, Nielson CM, Marshall LM, et al. The effects of serum testosterone, estradiol, and sex hormone binding globulin levels on fracture risk in older men. J Clin Endocrinol Metab. 2009;94(9):3337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yoshimura N, Muraki S, Oka H, Kawaguchi H, Nakamura K, Akune T. Capacity of endogenous sex steroids to predict bone loss in Japanese men: 10-year follow-up of the Taiji Cohort Study. J Bone Miner Metab. 2011;29(1):96–102.

    Article  CAS  PubMed  Google Scholar 

  63. Woo J, Kwok T, Leung JC, Ohlsson C, Vandenput L, Leung PC. Sex steroids and bone health in older Chinese men. Osteoporos Int. 2012;23(5):1553–62.

    Article  CAS  PubMed  Google Scholar 

  64. Khosla S, Melton 3rd LJ, Achenbach SJ, Oberg AL, Riggs BL. Hormonal and biochemical determinants of trabecular microstructure at the ultradistal radius in women and men. J Clin Endocrinol Metab. 2006;91(3):885–91.

    Article  CAS  PubMed  Google Scholar 

  65. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK. Bone loss and bone size after menopause. N Engl J Med. 2003;349(4):327–34.

    Article  PubMed  Google Scholar 

  66. Zebaze RM, Ghasem-Zadeh A, Bohte A, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010;375(9727):1729–36.

    Article  PubMed  Google Scholar 

  67. Vandenput L, Lorentzon M, Sundh D, et al. Serum estradiol levels are inversely associated with cortical porosity in older men. J Clin Endocrinol Metab. 2014;99(7):E1322–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Argoud T, Boutroy S, Claustrat B, Chapurlat R, Szulc P. Association between sex steroid levels and bone microarchitecture in men: the STRAMBO study. J Clin Endocrinol Metab. 2014;99(4):1400–10.

    Article  CAS  PubMed  Google Scholar 

  69. Travison TG, Araujo AB, Beck TJ, et al. Relation between serum testosterone, serum estradiol, sex hormone-binding globulin, and geometrical measures of adult male proximal femur strength. J Clin Endocrinol Metab. 2009;94(3):853–60.

    Article  CAS  PubMed  Google Scholar 

  70. Marshall DH, Crilly RG, Nordin BE. Plasma androstenedione and oestrone levels in normal and osteoporotic postmenopausal women. Br Med J. 1977;2(6096):1177–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Longcope C, Baker RS, Hui SL, Johnston Jr CC. Androgen and estrogen dynamics in women with vertebral crush fractures. Maturitas. 1984;6(4):309–18.

    Article  CAS  PubMed  Google Scholar 

  72. Davidson BJ, Riggs BL, Wahner HW, Judd HL. Endogenous cortisol and sex steroids in patients with osteoporotic spinal fractures. Obstet Gynecol. 1983;61(3):275–8.

    CAS  PubMed  Google Scholar 

  73. Riggs BL, Ryan RJ, Wahner HW, Jiang NS, Mattox VR. Serum concentrations of estrogen, testosterone, and gonadotropins in osteoporotic and nonosteoporotic postmenopausal women. J Clin Endocrinol Metab. 1973;36(6):1097–9.

    Article  CAS  PubMed  Google Scholar 

  74. Barrett-Connor E, Mueller JE, von Muhlen DG, Laughlin GA, Schneider DL, Sartoris DJ. Low levels of estradiol are associated with vertebral fractures in older men, but not women: the Rancho Bernardo Study. J Clin Endocrinol Metab. 2000;85(1):219–23.

    CAS  PubMed  Google Scholar 

  75. Jassal SK, Barrett-Connor E, Edelstein SL. Low bioavailable testosterone levels predict future height loss in postmenopausal women. J Bone Miner Res. 1995;10(4):650–4.

    Article  CAS  PubMed  Google Scholar 

  76. Cummings SR, Browner WS, Bauer D, et al. Endogenous hormones and the risk of hip and vertebral fractures among older women. Study of Osteoporotic Fractures Research Group. N Engl J Med. 1998;339(11):733–8.

    Article  CAS  PubMed  Google Scholar 

  77. Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res. 2000;15(8):1526–36.

    Article  CAS  PubMed  Google Scholar 

  78. Chapurlat RD, Garnero P, Breart G, Meunier PJ, Delmas PD. Serum estradiol and sex hormone-binding globulin and the risk of hip fracture in elderly women: the EPIDOS study. J Bone Miner Res. 2000;15(9):1835–41.

    Article  CAS  PubMed  Google Scholar 

  79. Goderie-Plomp HW, van der Klift M, de Ronde W, Hofman A, de Jong FH, Pols HA. Endogenous sex hormones, sex hormone-binding globulin, and the risk of incident vertebral fractures in elderly men and women: the Rotterdam Study. J Clin Endocrinol Metab. 2004;89(7):3261–9.

    Article  CAS  PubMed  Google Scholar 

  80. Devine A, Dick IM, Dhaliwal SS, Naheed R, Beilby J, Prince RL. Prediction of incident osteoporotic fractures in elderly women using the free estradiol index. Osteoporos Int. 2005;16(2):216–21.

    Article  CAS  PubMed  Google Scholar 

  81. Sipila S, Heikkinen E, Cheng S, et al. Endogenous hormones, muscle strength, and risk of fall-related fractures in older women. J Gerontol A Biol Sci Med Sci. 2006;61(1):92–6.

    Article  PubMed  Google Scholar 

  82. Cauley JA, LaCroix AZ, Robbins JA, et al. Baseline serum estradiol and fracture reduction during treatment with hormone therapy: the Women's Health Initiative randomized trial. Osteoporos Int. 2010;21(1):167–77.

    Article  CAS  PubMed  Google Scholar 

  83. Finigan J, Gossiel F, Gluer CC, et al. Endogenous estradiol and the risk of incident fracture in postmenopausal women: the OPUS study. Calcif Tissue Int. 2012;91(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  84. Prince RL, Dick IM, Beilby J, Dhaliwal SS, Devine A. A cohort study of the effect of endogenous estrogen on spine fracture risk and bone structure in elderly women and an assessment of its diagnostic usefulness. Bone. 2007;41(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  85. Moberg L, Nilsson PM, Samsioe G, Borgfeldt C. Low androstenedione/sex hormone binding globulin ratio increases fracture risk in postmenopausal women. The Women's Health in the Lund Area study. Maturitas. 2013;75(3):270–5.

    Article  CAS  PubMed  Google Scholar 

  86. Cauley JA, Chalhoub D, Kassem AM, Fuleihan GH. Geographic and ethnic disparities in osteoporotic fractures. Nat Rev Endocrinol. 2014;10(6):338–51.

    Article  PubMed  Google Scholar 

  87. Finkelstein JS, Sowers M, Greendale GA, et al. Ethnic variation in bone turnover in pre- and early perimenopausal women: effects of anthropometric and lifestyle factors. J Clin Endocrinol Metab. 2002;87(7):3051–6.

    Article  CAS  PubMed  Google Scholar 

  88. Stanley HL, Schmitt BP, Poses RM, Deiss WP. Does hypogonadism contribute to the occurrence of a minimal trauma hip fracture in elderly men? J Am Geriatr Soc. 1991;39(8):766–71.

    Article  CAS  PubMed  Google Scholar 

  89. Jackson JA, Riggs MW, Spiekerman AM. Testosterone deficiency as a risk factor for hip fractures in men: a case-control study. Am J Med Sci. 1992;304(1):4–8.

    Article  CAS  PubMed  Google Scholar 

  90. Gillberg P, Johansson AG, Ljunghall S. Decreased estradiol levels and free androgen index and elevated sex hormone-binding globulin levels in male idiopathic osteoporosis. Calcif Tissue Int. 1999;64(3):209–13.

    Article  CAS  PubMed  Google Scholar 

  91. Pietschmann P, Kudlacek S, Grisar J, et al. Bone turnover markers and sex hormones in men with idiopathic osteoporosis. Eur J Clin Invest. 2001;31(5):444–51.

    Article  CAS  PubMed  Google Scholar 

  92. Legrand E, Hedde C, Gallois Y, et al. Osteoporosis in men: a potential role for the sex hormone binding globulin. Bone. 2001;29(1):90–5.

    Article  CAS  PubMed  Google Scholar 

  93. Evans SF, Davie MW. Low body size and elevated sex-hormone binding globulin distinguish men with idiopathic vertebral fracture. Calcif Tissue Int. 2002;70(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  94. Nyquist F, Gardsell P, Sernbo I, Jeppsson JO, Johnell O. Assessment of sex hormones and bone mineral density in relation to occurrence of fracture in men: a prospective population-based study. Bone. 1998;22(2):147–51.

    Article  CAS  PubMed  Google Scholar 

  95. Center JR, Nguyen TV, Sambrook PN, Eisman JA. Hormonal and biochemical parameters and osteoporotic fractures in elderly men. J Bone Miner Res. 2000;15(7):1405–11.

    Article  CAS  PubMed  Google Scholar 

  96. Mellstrom D, Johnell O, Ljunggren O, et al. Free testosterone is an independent predictor of BMD and prevalent fractures in elderly men: MrOS Sweden. J Bone Miner Res. 2006;21(4):529–35.

    Article  PubMed  Google Scholar 

  97. Roddam AW, Appleby P, Neale R, et al. Association between endogenous plasma hormone concentrations and fracture risk in men and women: the EPIC-Oxford prospective cohort study. J Bone Miner Metab. 2009;27(4):485–93.

    Article  CAS  PubMed  Google Scholar 

  98. Kuchuk NO, van Schoor NM, Pluijm SM, Smit JH, de Ronde W, Lips P. The association of sex hormone levels with quantitative ultrasound, bone mineral density, bone turnover and osteoporotic fractures in older men and women. Clin Endocrinol (Oxf). 2007;67(2):295–303.

    Article  CAS  Google Scholar 

  99. Meier C, Nguyen TV, Handelsman DJ, et al. Endogenous sex hormones and incident fracture risk in older men: the Dubbo Osteoporosis Epidemiology Study. Arch Intern Med. 2008;168(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  100. Cauley JA, Parimi N, Ensrud KE, et al. Serum 25-hydroxyvitamin D and the risk of hip and nonspine fractures in older men. J Bone Miner Res. 2010;25(3):545–53.

    Article  CAS  PubMed  Google Scholar 

  101. Bjornerem A, Ahmed LA, Joakimsen RM, et al. A prospective study of sex steroids, sex hormone-binding globulin, and non-vertebral fractures in women and men: the Tromso Study. Eur J Endocrinol. 2007;157(1):119–25.

    Article  PubMed  CAS  Google Scholar 

  102. Hsu B, Cumming RG, Seibel MJ, et al. Reproductive Hormones and Longitudinal Change in Bone Mineral Density and Incident Fracture Risk in Older Men: The Concord Health and Ageing in Men Project. J Bone Miner Res. 2015.

    Google Scholar 

  103. Cawthon PM, Ensrud KE, Laughlin GA, et al. Sex hormones and frailty in older men: the osteoporotic fractures in men (MrOS) study. J Clin Endocrinol Metab. 2009;94(10):3806–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. LeBlanc ES, Wang PY, Lee CG, et al. Higher testosterone levels are associated with less loss of lean body mass in older men. J Clin Endocrinol Metab. 2011;96(12):3855–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ensrud KE, Taylor BC, Paudel ML, et al. Serum 25-hydroxyvitamin D levels and rate of hip bone loss in older men. J Clin Endocrinol Metab. 2009;94(8):2773–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Barrett-Connor E, Laughlin GA, Li H, et al. The association of concurrent vitamin D and sex hormone deficiency with bone loss and fracture risk in older men: the osteoporotic fractures in men (MrOS) study. J Bone Miner Res. 2012;27(11):2306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane A. Cauley DrPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cauley, J.A. (2016). Sex Steroids and Aging Bone. In: Duque, G., Kiel, D. (eds) Osteoporosis in Older Persons. Springer, Cham. https://doi.org/10.1007/978-3-319-25976-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25976-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25974-1

  • Online ISBN: 978-3-319-25976-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics