Skip to main content

Aging and Bone

  • Chapter
  • First Online:

Abstract

This chapter will provide a general overview of the aging process followed by the potential effect that aging may have in bone biology. Three important aspects will be considered: decreased number of osteoblasts, increasing adipogenesis and significant osteoblast/osteocytes apoptosis during the aging process in bone. Other aspects of bone aging has been addressed in recent reviews [1, 2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kassem M, Marie PJ. Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell. 2011;10:191–7.

    Article  CAS  PubMed  Google Scholar 

  2. Marie PJ, Kassem M. Extrinsic mechanisms involved in age-related defective bone formation. J Clin Endocrinol Metab. 2011;96:600–9.

    Article  CAS  PubMed  Google Scholar 

  3. Carrington JL. Aging bone and cartilage: cross-cutting issues. Biochem Biophys Res Commun. 2005;328:700–8.

    Article  CAS  PubMed  Google Scholar 

  4. Kirkwood TB, Austad SN. Why do we age? Nature. 2000;408:233–8.

    Article  CAS  PubMed  Google Scholar 

  5. Miller RA. When will the biology of aging become useful? future landmarks in biomedical gerontology. J Am Geriatr Soc. 1997;45:1258–67.

    Article  CAS  PubMed  Google Scholar 

  6. Busuttil RA, Dolle M, Campisi J, Vijga J. Genomic instability, aging, and cellular senescence. Ann N Y Acad Sci. 2004;1019:245–55.

    Article  CAS  PubMed  Google Scholar 

  7. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.

    Article  CAS  PubMed  Google Scholar 

  8. Campisi J. From cells to organisms: can we learn about aging from cells in culture? Exp Gerontol. 2001;36:607–18.

    Article  CAS  PubMed  Google Scholar 

  9. Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci U S A. 1998;95:10614–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kassem M, Ankersen L, Eriksen EF, Clark BF, Rattan SI. Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts. Osteoporos Int. 1997;7:514–24.

    Google Scholar 

  11. Kveiborg M, Rattan SI, Clark BF, Eriksen EF, Kassem M. Treatment with 1,25-dihydroxyvitamin D3 reduces impairment of human osteoblast functions during cellular aging in culture. J Cell Physiol. 2001;186:298–306.

    Article  CAS  PubMed  Google Scholar 

  12. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003;33:919–26.

    Article  PubMed  Google Scholar 

  13. Stenderup K, Rosada C, Justesen J, Al-Soubky T, Dagnaes-Hansen F, Kassem M. Aged human bone marrow stromal cells maintaining bone forming capacity in vivo evaluated using an improved method of visualization. Biogerontology. 2004;5:107–18.

    Article  CAS  PubMed  Google Scholar 

  14. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92:9363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Allsopp RC, Chang E, Kashefi-Aazam M, Rogaev EI, Piatyszek MA, Shay JW, Harley CB. Telomere shortening is associated with cell division in vitro and in vivo. Exp Cell Res. 1995;220:194–200.

    Article  CAS  PubMed  Google Scholar 

  16. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–60.

    Article  CAS  PubMed  Google Scholar 

  17. Harley CB. Telomere loss: mitotic clock or genetic time bomb? Mutat Res. 1991;256:271–82.

    Article  CAS  PubMed  Google Scholar 

  18. Simonsen JL, Rosada C, Serakinci N, Justesen J, Stenderup K, Rattan SI, Jensen TG, Kassem M. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol. 2002;20:592–6.

    Article  CAS  PubMed  Google Scholar 

  19. Brennan TA, Egan KP, Lindborg CM, Chen Q, Sweetwyne MT, Hankenson KD, Xie SX, Johnson FB, Pignolo RJ. Mouse models of telomere dysfunction phenocopy skeletal changes found in human age-related osteoporosis. Dis Model Mech. 2014;7:583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saeed H, Abdallah BM, Ditzel N, Catala-Lehnen P, Qiu W, Amling M, Kassem M. Telomerase-deficient mice exhibit bone loss owing to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26:1494–505.

    Article  CAS  Google Scholar 

  21. Bandyopadhyay D, Medrano EE. The emerging role of epigenetics in cellular and organismal aging. Exp Gerontol. 2003;38:1299–307.

    Article  CAS  PubMed  Google Scholar 

  22. Lesnefsky EJ, Hoppel CL. Oxidative phosphorylation and aging. Ageing Res Rev. 2006;5:402–33.

    Article  CAS  PubMed  Google Scholar 

  23. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.

    Article  CAS  PubMed  Google Scholar 

  24. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Holbrook NJ. Common mechanisms for declines in oxidative stress tolerance and proliferation with aging. Free Radic Biol Med. 2003;35:292–9.

    Article  CAS  PubMed  Google Scholar 

  26. Ikeyama S, Wang XT, Li J, Podlutsky A, Martindale JL, Kokkonen G, van Huizen R, Gorospe M, Holbrook NJ. Expression of the pro-apoptotic gene gadd153/chop is elevated in liver with aging and sensitizes cells to oxidant injury. J Biol Chem. 2003;278:16726–31.

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Holbrook NJ. Elevated gadd153/chop expression and enhanced c-Jun N-terminal protein kinase activation sensitizes aged cells to ER stress. Exp Gerontol. 2004;39:735–44.

    Article  CAS  PubMed  Google Scholar 

  28. DeGroot J. The AGE, of the matrix: chemistry, consequence and cure. Curr Opin Pharmacol. 2004;4:301–5.

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt AM, Stern DM. Receptor for age (RAGE) is a gene within the major histocompatibility class III region: implications for host response mechanisms in homeostasis and chronic disease. Front Biosci J Virtual Library. 2001;6:D1151–60.

    CAS  Google Scholar 

  30. Pricci F, Leto G, Amadio L, Iacobini C, Romeo G, Cordone S, Gradini R, Barsotti P, Liu FT, Di Mario U, Pugliese G. Role of galectin-3 as a receptor for advanced glycosylation end products. Kidney Int Suppl. 2000;77:S31–9.

    Article  CAS  PubMed  Google Scholar 

  31. Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, Pinsky D, Stern D. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem.1994;269:9889–97.

    CAS  PubMed  Google Scholar 

  32. Olson BR. Bone embryology. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Washington, DC: American society for bone and mineral research; 2006. p. 2–6.

    Google Scholar 

  33. Abdallah BM, Haack-Sorensen M, Fink T, Kassem M. Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone. 2006;39:181–8.

    Article  PubMed  Google Scholar 

  34. Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol. 1976;47:327–59.

    Article  CAS  PubMed  Google Scholar 

  35. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403.

    CAS  PubMed  Google Scholar 

  36. Foy H, Kondi A. Reticulo-endothelial cells as ‘nurses’ for plasma cells and erythroblasts in baboons. Nature. 1964;204:293.

    Article  CAS  PubMed  Google Scholar 

  37. Westen H, Bainton DF. Association of alkaline-phosphatase-positive reticulum cells in bone marrow with granulocytic precursors. J Exp Med. 1979;150:919–37.

    Article  CAS  PubMed  Google Scholar 

  38. Weiss L, Sakai H. The hematopoietic stroma. Am J Anat. 1984;170:447–63.

    Article  CAS  PubMed  Google Scholar 

  39. Gimble JM, Pietrangeli C, Henley A, Dorheim MA, Silver J, Namen A, Takeichi M, Goridis C, Kincade PW. Characterization of murine bone marrow and spleen-derived stromal cells: analysis of leukocyte marker and growth factor mRNA transcript levels. Blood. 1989;74:303–11.

    CAS  PubMed  Google Scholar 

  40. Owen M. Marrow stromal stem cells. J Cell Sci Suppl. 1988;10:63–76.

    Article  CAS  PubMed  Google Scholar 

  41. Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp. 1988;136:42–60.

    CAS  PubMed  Google Scholar 

  42. Kassem M, Bianco P. Skeletal stem cells in space and time. Cell. 2015;160:17–9.

    Article  CAS  PubMed  Google Scholar 

  43. Grigoriadis AE, Heersche JN, Aubin JE. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol. 1988;106:2139–51.

    Article  CAS  PubMed  Google Scholar 

  44. Nuttall ME, Patton AJ, Olivera DL, Nadeau DP, Gowen M. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res Off J Am Soc Bone Miner Res. 1998;13:371–82.

    Article  CAS  Google Scholar 

  45. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  46. Jiang D, Fei RG, Pendergrass WR, Wolf NS. An age-related reduction in the replicative capacity of two murine hematopoietic stroma cell types. Exp Hematol. 1992;20:1216–22.

    CAS  PubMed  Google Scholar 

  47. D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res Off J Am Soc Bone Miner Res. 1999;14:1115–22.

    Article  Google Scholar 

  48. Stenderup K, Justesen J, Eriksen EF, Rattan SI, Kassem M. Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J Bone Miner Res Off J Am Soc Bone Miner Res. 2001;16:1120–9.

    Article  CAS  Google Scholar 

  49. Justesen J, Stenderup K, Eriksen EF, Kassem M. Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Calcif Tissue Int. 2002;71:36–44.

    Article  CAS  PubMed  Google Scholar 

  50. Custer RP. Studies on the structure and function of bone marrow. II. Variations in cellularity of various bones with advancing years of life and their relative response to stimuli. J Lab Clin Med. 1932;17:960–2.

    Google Scholar 

  51. Hartsock RJ, Smith EB, Petty CS. Normal variations with aging of the amount of hematopoietic tissue in bone marrow from the anterior iliac crest. A study made from 177 cases of sudden death examined by necropsy. Am J Clin Pathol. 1965;43:326–31.

    Article  CAS  PubMed  Google Scholar 

  52. Vost A. Osteoporosis: a necropsy study of vertebrae and iliac crests. Am J Pathol. 1963;43:143–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hudson G. Bone-marrow volume in the human foetus and newborn. Br J Haematol. 1965;11:446–52.

    Article  CAS  PubMed  Google Scholar 

  54. Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971;80:147–54.

    Article  CAS  PubMed  Google Scholar 

  55. Babyn PS, Ranson M, McCarville ME. Normal bone marrow: signal characteristics and fatty conversion. Magn Reson Imaging Clin N Am. 1998;6:473–95.

    CAS  PubMed  Google Scholar 

  56. Sheu Y, Cauley JA. The role of bone marrow and visceral fat on bone metabolism. Curr Osteoporos Rep. 2011;9:67–75.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Roldan-Valadez E, Pina-Jimenez C, Favila R, Rios C. Gender and age groups interactions in the quantification of bone marrow fat content in lumbar spine using 3 T MR spectroscopy: a multivariate analysis of covariance (Mancova). Eur J Radiol. 2013;82:e697–702.

    Article  PubMed  Google Scholar 

  58. Breault SR, Heye T, Bashir MR, Dale BM, Merkle EM, Reiner CS, Faridi KF, Gupta RT. Quantitative dynamic contrast-enhanced MRI of pelvic and lumbar bone marrow: effect of age and marrow fat content on pharmacokinetic parameter values. AJR Am J Roentgenol. 2013;200:W297–303.

    Article  PubMed  Google Scholar 

  59. Hardouin P, Pansini V, Cortet B. Bone marrow fat. Joint Bone Spine. 2014;81:313–9.

    Article  PubMed  Google Scholar 

  60. Pansini V, Monnet A, Salleron J, Hardouin P, Cortet B, Cotten A. 3 Tesla (1) H MR spectroscopy of hip bone marrow in a healthy population, assessment of normal fat content values and influence of age and sex. J Magn Reson Imaging JMRI. 2014;39:369–76.

    Article  PubMed  Google Scholar 

  61. Wren TA, Chung SA, Dorey FJ, Bluml S, Adams GB, Gilsanz V. Bone marrow fat is inversely related to cortical bone in young and old subjects. J Clin Endocrinol Metab. 2011;96:782–6.

    Article  CAS  PubMed  Google Scholar 

  62. Di Iorgi N, Mo AO, Grimm K, Wren TA, Dorey F, Gilsanz V. Bone acquisition in healthy young females is reciprocally related to marrow adiposity. J Clin Endocrinol Metab. 2010;95:2977–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Griffith JF, Yeung DK, Ma HT, Leung JC, Kwok TC, Leung PC. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging JMRI. 2012;36:225–30.

    Article  PubMed  Google Scholar 

  64. Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci. 1992;102(Pt 2):341–51.

    CAS  PubMed  Google Scholar 

  65. Dorheim MA, Sullivan M, Dandapani V, Wu X, Hudson J, Segarini PR, Rosen DM, Aulthouse AL, Gimble JM. Osteoblastic gene expression during adipogenesis in hematopoietic supporting murine bone marrow stromal cells. J Cell Physiol. 1993;154:317–28.

    Article  CAS  PubMed  Google Scholar 

  66. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME. Playing with bone and fat. J Cell Biochem. 2006;98:251–66.

    Article  CAS  PubMed  Google Scholar 

  67. Lavoie JR, Rosu-Myles M. Uncovering the secretes of mesenchymal stem cells. Biochimie. 2013;95:2212–21.

    Article  CAS  PubMed  Google Scholar 

  68. Maumus M, Jorgensen C, Noel D. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie. 2013;95:2229–34.

    Article  CAS  PubMed  Google Scholar 

  69. Kupcova SH. Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie. 2013;95:2196–211.

    Article  CAS  Google Scholar 

  70. Kristensen LP, Chen L, Nielsen MO, Qanie DW, Kratchmarova I, Kassem M, Andersen JS. Temporal profiling and pulsed SILAC labeling identify novel secreted proteins during ex vivo osteoblast differentiation of human stromal stem cells. Mol Cell Proteomics MCP. 2012;11:989–1007.

    Article  CAS  PubMed  Google Scholar 

  71. Wei J, Li H, Wang S, Li T, Fan J, Liang X, Li J, Han Q, Zhu L, Fan L, Zhao RC. let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2. Stem Cells Dev. 2014;23:1452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Clark EA, Kalomoiris S, Nolta JA, Fierro FA. Concise review: MicroRNA function in multipotent mesenchymal stromal cells. Stem Cells. 2014;32:1074–82.

    Article  CAS  PubMed  Google Scholar 

  73. Eskildsen T, Taipaleenmaki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S, Kassem M. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci U S A. 2011;108:6139–44.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chen L, Holmstrom K, Qiu W, Ditzel N, Shi K, Hokland L, Kassem M. MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells. 2014;32:902–12.

    Article  CAS  PubMed  Google Scholar 

  75. Taipaleenmaki H, Bjerre Hokland L, Chen L, Kauppinen S, Kassem M. Mechanisms in endocrinology: micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur J Endocrinol Eur Fed Endocrine Soc. 2012;166:359–71.

    Article  CAS  Google Scholar 

  76. Takada I, Suzawa M, Kato S. Nuclear receptors as targets for drug development: crosstalk between peroxisome proliferator-activated receptor gamma and cytokines in bone marrow-derived mesenchymal stem cells. J Pharmacol Sci. 2005;97:184–9.

    Article  CAS  PubMed  Google Scholar 

  77. Nettles KW, Greene GL. Ligand control of coregulator recruitment to nuclear receptors. Annu Rev Physiol. 2005;67:309–33.

    Article  CAS  PubMed  Google Scholar 

  78. Sadie-Van Gijsen H, Hough FS, Ferris WF. Determinants of bone marrow adiposity: the modulation of peroxisome proliferator-activated receptor-gamma2 activity as a central mechanism. Bone. 2013;56:255–65.

    Article  CAS  PubMed  Google Scholar 

  79. Gimble JM, Robinson CE, Wu X, Kelly KA. The function of adipocytes in the bone marrow stroma: an update. Bone. 1996;19:421–8.

    Article  CAS  PubMed  Google Scholar 

  80. Gimble JM, Robinson CE, Wu X, Kelly KA, Rodriguez BR, Kliewer SA, Lehmann JM, Morris DC. Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol. 1996;50:1087–94.

    CAS  PubMed  Google Scholar 

  81. Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest. 2004;113:846–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kawaguchi H, Akune T, Yamaguchi M, Ohba S, Ogata N, Chung UI, Kubota N, Terauchi Y, Kadowaki T, Nakamura K. Distinct effects of PPARgamma insufficiency on bone marrow cells, osteoblasts, and osteoclastic cells. J Bone Miner Metab. 2005;23:275–9.

    Article  PubMed  Google Scholar 

  83. Schwartz AV, Sellmeyer DE, Vittinghoff E, Palermo L, Lecka-Czernik B, Feingold KR, Strotmeyer ES, Resnick HE, Carbone L, Beamer BA, Park SW, Lane NE, Harris TB, Cummings SR. Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab. 2006;91:3349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rosen J, Miner JN. The search for safer glucocorticoid receptor ligands. Endocr Rev. 2005;26:452–64.

    Article  CAS  PubMed  Google Scholar 

  85. Li X, Jin L, Cui Q, Wang GJ, Balian G. Steroid effects on osteogenesis through mesenchymal cell gene expression. Osteoporos Int. 2005;16:101–8.

    Article  PubMed  CAS  Google Scholar 

  86. Srouji S, Livne E. Bone marrow stem cells and biological scaffold for bone repair in aging and disease. Mech Ageing Dev. 2005;126:281–7.

    Article  CAS  PubMed  Google Scholar 

  87. Bennett CN, Ross SE, Longo KA, Bajnok L, Hemati N, Johnson KW, Harrison SD, MacDougald OA. Regulation of Wnt signaling during adipogenesis. J Biol Chem. 2002;277:30998–1004.

    Article  CAS  PubMed  Google Scholar 

  88. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA. Inhibition of adipogenesis by Wnt signaling. Science. 2000;289:950–3.

    Article  CAS  PubMed  Google Scholar 

  89. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Juppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML, Osteoporosis-Pseudoglioma Syndrome Collaborative G. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107:513–23.

    Article  CAS  PubMed  Google Scholar 

  90. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346:1513–21.

    Article  CAS  PubMed  Google Scholar 

  91. Taipaleenmaki H, Abdallah BM, AlDahmash A, Saamanen AM, Kassem M. Wnt signalling mediates the cross-talk between bone marrow derived pre-adipocytic and pre-osteoblastic cell populations. Exp Cell Res. 2011;317:745–56.

    Article  CAS  PubMed  Google Scholar 

  92. Qiu W, Andersen TE, Bollerslev J, Mandrup S, Abdallah BM, Kassem M. Patients with high bone mass phenotype exhibit enhanced osteoblast differentiation and inhibition of adipogenesis of human mesenchymal stem cells. J Bone Miner Res Off J Am Soc Bone Miner Res. 2007;22:1720–31.

    Article  CAS  Google Scholar 

  93. Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A. 2005;102:3324–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhou S, Eid K, Glowacki J. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res Off J Am Soc Bone Miner Res. 2004;19:463–70.

    Article  CAS  Google Scholar 

  95. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Wool EA, Monroe CA, Tepper RI. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83:1263–71.

    Article  CAS  PubMed  Google Scholar 

  96. Hamrick MW, Ding KH, Pennington C, Chao YJ, Wu YD, Howard B, Immel D, Borlongan C, McNeil PL, Bollag WB, Curl WW, Yu J, Isales CM. Age-related loss of muscle mass and bone strength in mice is associated with a decline in physical activity and serum leptin. Bone. 2006;39:845–53.

    Article  CAS  PubMed  Google Scholar 

  97. Crabbe P, Goemaere S, Zmierczak H, Van Pottelbergh I, De Bacquer D, Kaufman JM. Are serum leptin and the Gln223Arg polymorphism of the leptin receptor determinants of bone homeostasis in elderly men? Eur J Endocrinol Eur Fed Endocrine Soc. 2006;154:707–14.

    Article  CAS  Google Scholar 

  98. Hess R, Pino AM, Rios S, Fernandez M, Rodriguez JP. High affinity leptin receptors are present in human mesenchymal stem cells (MSCs) derived from control and osteoporotic donors. J Cell Biochem. 2005;94:50–7.

    Article  CAS  PubMed  Google Scholar 

  99. Berner HS, Lyngstadaas SP, Spahr A, Monjo M, Thommesen L, Drevon CA, Syversen U, Reseland JE. Adiponectin and its receptors are expressed in bone-forming cells. Bone. 2004;35:842–9.

    Article  CAS  PubMed  Google Scholar 

  100. Shinoda Y, Yamaguchi M, Ogata N, Akune T, Kubota N, Yamauchi T, Terauchi Y, Kadowaki T, Takeuchi Y, Fukumoto S, Ikeda T, Hoshi K, Chung UI, Nakamura K, Kawaguchi H. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem. 2006;99:196–208.

    Article  CAS  PubMed  Google Scholar 

  101. Cawthorn WP, Scheller EL, Learman BS, Parlee SD, Simon BR, Mori H, Ning X, Bree AJ, Schell B, Broome DT, Soliman SS, DelProposto JL, Lumeng CN, Mitra A, Pandit SV, Gallagher KA, Miller JD, Krishnan V, Hui SK, Bredella MA, Fazeli PK, Klibanski A, Horowitz MC, Rosen CJ, MacDougald OA. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 2014;20:368–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Abdallah BM, Jafari A, Zaher W, Qiu W, Kassem M. Skeletal (stromal) stem cells: an update on intracellular signaling pathways controlling osteoblast differentiation. Bone. 2015;70:28–36.

    Article  CAS  PubMed  Google Scholar 

  103. Abdallah BM, Ditzel N, Mahmood A, Isa A, Traustadottir GA, Schilling AF, Ruiz-Hidalgo MJ, Laborda J, Amling M, Kassem M. DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26:1457–71.

    Article  CAS  Google Scholar 

  104. Abdallah BM, Bay-Jensen AC, Srinivasan B, Tabassi NC, Garnero P, Delaisse JM, Khosla S, Kassem M. Estrogen inhibits Dlk1/FA1 production: a potential mechanism for estrogen effects on bone turnover. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26:2548–51.

    Article  CAS  Google Scholar 

  105. Bredella MA, Fazeli PK, Freedman LM, Calder G, Lee H, Rosen CJ, Klibanski A. Young women with cold-activated brown adipose tissue have higher bone mineral density and lower Pref-1 than women without brown adipose tissue: a study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women. J Clin Endocrinol Metab. 2012;97:E584–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA. The hormone resistin links obesity to diabetes. Nature. 2001;409:307–12.

    Article  CAS  PubMed  Google Scholar 

  107. Thommesen L, Stunes AK, Monjo M, Grosvik K, Tamburstuen MV, Kjobli E, Lyngstadaas SP, Reseland JE, Syversen U. Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J Cell Biochem. 2006;99:824–34.

    Article  CAS  PubMed  Google Scholar 

  108. Oh KW, Lee WY, Rhee EJ, Baek KH, Yoon KH, Kang MI, Yun EJ, Park CY, Ihm SH, Choi MG, Yoo HJ, Park SW. The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men. Clin Endocrinol (Oxf). 2005;63:131–8.

    Article  CAS  Google Scholar 

  109. Tong J, Li W, Vidal C, Yeo LS, Fatkin D, Duque G. Lamin A/C deficiency is associated with fat infiltration of muscle and bone. Mech Ageing Dev. 2011;132:552–9.

    Article  CAS  PubMed  Google Scholar 

  110. Duque G, Li W, Adams M, Xu S, Phipps R. Effects of risedronate on bone marrow adipocytes in postmenopausal women. Osteoporos Int. 2011;22:1547–53.

    Article  CAS  PubMed  Google Scholar 

  111. Gimble JM, Nuttall ME. Bone and fat: old questions, new insights. Endocrine. 2004;23:183–8.

    Article  CAS  PubMed  Google Scholar 

  112. Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature. 2009;460:1154–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D, Spiegelman BM. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 2007;6:38–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jacobsson A, Stadler U, Glotzer MA, Kozak LP. Mitochondrial uncoupling protein from mouse brown fat. Molecular cloning, genetic mapping, and mRNA expression. J Biol Chem. 1985;260:16250–4.

    CAS  PubMed  Google Scholar 

  115. Huggins C, Blocksom BH. Changes in outlying bone marrow accompanying a local increase of temperature within physiological limits. J Exp Med. 1936;64:253–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huggins C, Noonan WJ. An increase in reticulo-endothelial cells in outlying bone marrow consequent upon a local increase in temperature. J Exp Med. 1936;64:275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Huggins C, Blocksom BH, Noonan WJ. Temperature conditions in bone marrow of rabbit, pigeon, and albino rat. Am J Physiol. 1936;115:253–74.

    Google Scholar 

  118. Petrakis NL. Some physiological and developmental considerations of the temperature-gradient hypothesis of bone marrow distribution. Am J Phys Anthropol. 1966;25:119–29.

    Article  CAS  PubMed  Google Scholar 

  119. Weiss LP, Wislocki GB. Seasonal variations in hematopoiesis in the dermal bones of the nine-banded armadillo. Anat Rec. 1956;126:143–63.

    Article  CAS  PubMed  Google Scholar 

  120. Tavassoli M. Marrow adipose cells and hemopoiesis: an interpretative review. Exp Hematol. 1984;12:139–46.

    CAS  PubMed  Google Scholar 

  121. Tavassoli M, Crosby WH. Bone marrow histogenesis: a comparison of fatty and red marrow. Science. 1970;169:291–3.

    Article  CAS  PubMed  Google Scholar 

  122. Tavassoli M, Maniatis A, Crosby WH. Induction of sustained hemopoiesis in fatty marrow. Blood. 1974;43:33–8.

    CAS  PubMed  Google Scholar 

  123. Tavassoli M, Maniatis A, Crosby WH. The effects of phenylhydrazine-induced haemolysis on the behaviour of regenerating marrow stroma. Br J Haematol. 1972;23:707–11.

    Article  CAS  PubMed  Google Scholar 

  124. Maniatis A, Tavassoli M, Crosby WH. Factors affecting the conversion of yellow to red marrow. Blood. 1971;37:581–6.

    CAS  PubMed  Google Scholar 

  125. Bathija A, Davis S, Trubowitz S. Marrow adipose tissue: response to erythropoiesis. Am J Hematol. 1978;5:315–21.

    Article  CAS  PubMed  Google Scholar 

  126. Brookoff D, Weiss L. Adipocyte development and the loss of erythropoietic capacity in the bone marrow of mice after sustained hypertransfusion. Blood. 1982;60:1337–44.

    CAS  PubMed  Google Scholar 

  127. Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone. 2012;50:546–52.

    Article  CAS  PubMed  Google Scholar 

  128. Olmsted-Davis E, Gannon FH, Ozen M, Ittmann MM, Gugala Z, Hipp JA, Moran KM, Fouletier-Dilling CM, Schumara-Martin S, Lindsey RW, Heggeness MH, Brenner MK, Davis AR. Hypoxic adipocytes pattern early heterotopic bone formation. Am J Pathol. 2007;170:620–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Salisbury E, Hipp J, Olmsted-Davis EA, Davis AR, Heggeness MH, Gannon FH. Histologic identification of brown adipose and peripheral nerve involvement in human atherosclerotic vessels. Hum Pathol. 2012;43:2213–22.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Salisbury EA, Lazard ZW, Ubogu EE, Davis AR, Olmsted-Davis EA. Transient brown adipocyte-like cells derive from peripheral nerve progenitors in response to bone morphogenetic protein 2. Stem Cells Transl Med. 2012;1:874–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Stephens EH, Saltarrelli Jr JG, Balaoing LR, Baggett LS, Nandi I, Anderson KM, Morrisett JD, Reardon MJ, Simpson MA, Weigel PH, Olmsted-Davis EA, Davis AR, Grande-Allen KJ. Hyaluronan turnover and hypoxic brown adipocytic differentiation are co-localized with ossification in calcified human aortic valves. Pathol Res Pract. 2012;208:642–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hussain MM, Mahley RW, Boyles JK, Fainaru M, Brecht WJ, Lindquist PA. Chylomicron-chylomicron remnant clearance by liver and bone marrow in rabbits. Factors that modify tissue-specific uptake. J Biol Chem. 1989;264:9571–82.

    CAS  PubMed  Google Scholar 

  133. Hussain MM, Mahley RW, Boyles JK, Lindquist PA, Brecht WJ, Innerarity TL. Chylomicron metabolism. Chylomicron uptake by bone marrow in different animal species. J Biol Chem. 1989;264:17931–8.

    CAS  PubMed  Google Scholar 

  134. Tavassoli M, Eastlund DT, Yam LT, Neiman RS, Finkel H. Gelatinous transformation of bone marrow in prolonged self-induced starvation. Scand J Haematol. 1976;16:311–9.

    Article  CAS  PubMed  Google Scholar 

  135. Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M, Thomas BJ, Ghomi RH, Rosen CJ, Klibanski A. Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab. 2009;94:2129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, Baron R, Rosen CJ, Bouxsein ML. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res Off J Am Soc Bone Miner Res. 2010;25:2078–88.

    Article  Google Scholar 

  137. Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 2013;27:234–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19:1252–63.

    Article  CAS  PubMed  Google Scholar 

  139. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.

    Article  CAS  PubMed  Google Scholar 

  140. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.

    Article  PubMed  Google Scholar 

  141. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rahman S, Lu Y, Czernik PJ, Rosen CJ, Enerback S, Lecka-Czernik B. Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton. Endocrinology. 2013;154:2687–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, Lomedico PT, Recker SM, Van Eerdewegh P, Recker RR, Johnson ML. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70:11–9.

    Article  CAS  PubMed  Google Scholar 

  144. Styner M, Thompson WR, Galior K, Uzer G, Wu X, Kadari S, Case N, Xie Z, Sen B, Romaine A, Pagnotti GM, Rubin CT, Styner MA, Horowitz MC, Rubin J. Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone. 2014;64:39–46.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hargrave KM, Li C, Meyer BJ, Kachman SD, Hartzell DL, Della-Fera MA, Miner JL, Baile CA. Adipose depletion and apoptosis induced by trans-10, cis-12 conjugated linoleic acid in mice. Obes Res. 2002;10:1284–90.

    Article  CAS  PubMed  Google Scholar 

  146. Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW. Effect of conjugated linoleic acid on body composition in mice. Lipids. 1997;32:853–8.

    Article  CAS  PubMed  Google Scholar 

  147. Rahman MM, Bhattacharya A, Fernandes G. Conjugated linoleic acid inhibits osteoclast differentiation of RAW264.7 cells by modulating RANKL signaling. J Lipid Res. 2006;47:1739–48.

    Article  CAS  PubMed  Google Scholar 

  148. Bonnet N, Somm E, Rosen CJ. Diet and gene interactions influence the skeletal response to polyunsaturated fatty acids. Bone. 2014;68:100–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Reid IR. Relationships among body mass, its components, and bone. Bone. 2002;31:547–55.

    Article  CAS  PubMed  Google Scholar 

  150. Bolland MJ, Grey AB, Ames RW, Horne AM, Gamble GD, Reid IR. Fat mass is an important predictor of parathyroid hormone levels in postmenopausal women. Bone. 2006;38:317–21.

    Article  CAS  PubMed  Google Scholar 

  151. Hamrick MW, Della-Fera MA, Choi YH, Pennington C, Hartzell D, Baile CA. Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J Bone Miner Res Off J Am Soc Bone Miner Res. 2005;20:994–1001.

    Article  CAS  Google Scholar 

  152. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;140:1630–8.

    CAS  PubMed  Google Scholar 

  153. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111:305–17.

    Article  CAS  PubMed  Google Scholar 

  154. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100:197–207.

    Article  CAS  PubMed  Google Scholar 

  155. Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, Langefeld CD, Carr JJ, Bowden DW. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone. 2003;33:646–51.

    Article  CAS  PubMed  Google Scholar 

  156. Yokota T, Meka CS, Medina KL, Igarashi H, Comp PC, Takahashi M, Nishida M, Oritani K, Miyagawa J, Funahashi T, Tomiyama Y, Matsuzawa Y, Kincade PW. Paracrine regulation of fat cell formation in bone marrow cultures via adiponectin and prostaglandins. J Clin Invest. 2002;109:1303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, Yoshikawa H, Shimomura I. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun. 2005;331:520–6.

    Article  CAS  PubMed  Google Scholar 

  158. Jurimae J, Rembel K, Jurimae T, Rehand M. Adiponectin is associated with bone mineral density in perimenopausal women. Horm Metab Res. 2005;37:297–302.

    Article  CAS  PubMed  Google Scholar 

  159. Nielson CM, Srikanth P, Orwoll ES. Obesity and fracture in men and women: an epidemiologic perspective. J Bone Miner Res Off J Am Soc Bone Miner Res. 2012;27:1–10.

    Article  Google Scholar 

  160. Caffarelli C, Alessi C, Nuti R, Gonnelli S. Divergent effects of obesity on fragility fractures. Clin Interv Aging. 2014;9:1629–36.

    PubMed  PubMed Central  Google Scholar 

  161. Lecka-Czernik B, Stechschulte LA, Czernik PJ, Dowling AR. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol Cell Endocrinol. 2015;410:35–41.

    Article  CAS  PubMed  Google Scholar 

  162. Cao JJ. Effects of obesity on bone metabolism. J Orthop Surg Res. 2011;6:30.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142:296–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere MC, Aja S, Hussain MA, Bruning JC, Clemens TL. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142:309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H, Blaner WS, Karsenty G. Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest. 2014;124:1–13.

    Article  PubMed  CAS  Google Scholar 

  166. Kaji H, Hisa I, Inoue Y, Naito J, Sugimoto T, Kasuga M. Analysis of factors affecting increase in bone mineral density at lumbar spine by bisphosphonate treatment in postmenopausal osteoporosis. J Bone Miner Metab. 2009;27:76–82.

    Article  CAS  PubMed  Google Scholar 

  167. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK. Bone loss and bone size after menopause. N Engl J Med. 2003;349:327–34.

    Article  PubMed  Google Scholar 

  168. Aloia JF, Vaswani A, Russo L, Sheehan M, Flaster E. The influence of menopause and hormonal replacement therapy on body cell mass and body fat mass. Am J Obstet Gynecol. 1995;172:896–900.

    Article  CAS  PubMed  Google Scholar 

  169. Pacifici R, Brown C, Puscheck E, Friedrich E, Slatopolsky E, Maggio D, McCracken R, Avioli LV. Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells. Proc Natl Acad Sci U S A. 1991;88:5134–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pfeilschifter J, Koditz R, Pfohl M, Schatz H. Changes in proinflammatory cytokine activity after menopause. Endocr Rev. 2002;23:90–119.

    Article  CAS  PubMed  Google Scholar 

  171. Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995;332:305–11.

    Article  CAS  PubMed  Google Scholar 

  172. Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res Off J Am Soc Bone Miner Res. 1998;13:793–802.

    Article  CAS  Google Scholar 

  173. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102:274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Soroceanu MA, Miao D, Bai XY, Su H, Goltzman D, Karaplis AC. Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. J Endocrinol. 2004;183:203–16.

    Article  CAS  PubMed  Google Scholar 

  175. Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, Bellido T. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res Off J Am Soc Bone Miner Res. 2006;21:605–15.

    Article  Google Scholar 

  176. Kume S, Kato S, Yamagishi S, Inagaki Y, Ueda S, Arima N, Okawa T, Kojiro M, Nagata K. Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res Off J Am Soc Bone Miner Res. 2005;20:1647–58.

    Article  CAS  Google Scholar 

  177. Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest. 1999;104:439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest. 1999;104:1363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Duque G, El Abdaimi K, Henderson JE, Lomri A, Kremer R. Vitamin D inhibits Fas ligand-induced apoptosis in human osteoblasts by regulating components of both the mitochondrial and Fas-related pathways. Bone. 2004;35:57–64.

    Article  CAS  PubMed  Google Scholar 

  180. Byun CH, Koh JM, Kim DK, Park SI, Lee KU, Kim GS. Alpha-lipoic acid inhibits TNF-alpha-induced apoptosis in human bone marrow stromal cells. J Bone Miner Res Off J Am Soc Bone Miner Res. 2005;20:1125–35.

    Article  CAS  Google Scholar 

  181. Ahuja SS, Zhao S, Bellido T, Plotkin LI, Jimenez F, Bonewald LF. CD40 ligand blocks apoptosis induced by tumor necrosis factor alpha, glucocorticoids, and etoposide in osteoblasts and the osteocyte-like cell line murine long bone osteocyte-Y4. Endocrinology. 2003;144:1761–9.

    Article  CAS  PubMed  Google Scholar 

  182. Miura M, Chen XD, Allen MR, Bi Y, Gronthos S, Seo BM, Lakhani S, Flavell RA, Feng XH, Robey PG, Young M, Shi S. A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest. 2004;114:1704–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pantschenko AG, Zhang W, Nahounou M, McCarthy MB, Stover ML, Lichtler AC, Clark SH, Gronowicz GA. Effect of osteoblast-targeted expression of bcl-2 in bone: differential response in male and female mice. J Bone Miner Res Off J Am Soc Bone Miner Res. 2005;20:1414–29.

    Article  CAS  Google Scholar 

  184. Plotkin LI, Manolagas SC, Bellido T. Dissociation of the pro-apoptotic effects of bisphosphonates on osteoclasts from their anti-apoptotic effects on osteoblasts/osteocytes with novel analogs. Bone. 2006;39:443–52.

    Article  CAS  PubMed  Google Scholar 

  185. Zhao H, Ross FP, Teitelbaum SL. Unoccupied alpha(v)beta3 integrin regulates osteoclast apoptosis by transmitting a positive death signal. Mol Endocrinol. 2005;19:771–80.

    Article  CAS  PubMed  Google Scholar 

  186. Sorisky A, Magun R, Gagnon AM. Adipose cell apoptosis: death in the energy depot. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2000;24 Suppl 4:S3–7.

    Article  CAS  Google Scholar 

  187. Prins JB, Niesler CU, Winterford CM, Bright NA, Siddle K, O’Rahilly S, Walker NI, Cameron DP. Tumor necrosis factor-alpha induces apoptosis of human adipose cells. Diabetes. 1997;46:1939–44.

    Article  CAS  PubMed  Google Scholar 

  188. Niesler CU, Siddle K, Prins JB. Human preadipocytes display a depot-specific susceptibility to apoptosis. Diabetes. 1998;47:1365–8.

    Article  CAS  PubMed  Google Scholar 

  189. Kim HS, Hausman DB, Compton MM, Dean RG, Martin RJ, Hausman GJ, Hartzell DL, Baile CA. Induction of apoptosis by all-trans-retinoic acid and C2-ceramide treatment in rat stromal-vascular cultures. Biochem Biophys Res Commun. 2000;270:76–80.

    Article  CAS  PubMed  Google Scholar 

  190. Nelson-Dooley C, Della-Fera MA, Hamrick M, Baile CA. Novel treatments for obesity and osteoporosis: targeting apoptotic pathways in adipocytes. Curr Med Chem. 2005;12:2215–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Gimble MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gimble, J.M., Floyd, Z.E., Kassem, M., Nuttall, M.E. (2016). Aging and Bone. In: Duque, G., Kiel, D. (eds) Osteoporosis in Older Persons. Springer, Cham. https://doi.org/10.1007/978-3-319-25976-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25976-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25974-1

  • Online ISBN: 978-3-319-25976-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics