Skip to main content

Fracture Care in the Elderly

  • Chapter
  • First Online:
  • 1154 Accesses

Abstract

The prevalence of osteoporosis has increased as global life expectancy has increased. Fractures associated with osteoporosis present as challenges to the provider of musculoskeletal health care as a result of the alteration in mechanism of fracture, fracture pattern, strength of internal fixation, and bone healing that result from the weakened bone. Medical and cognitive comorbidities present further challenges to fracture care. In the past few decades, several advances in team-based patient care, internal fixation, and bone growth stimulation have enhanced the ability of musculoskeletal health care providers to treat osteoporotic fractures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. World Health Organization Global Health Observatory (GHO): Life Expectancy. http://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends_text/en/. Accessed 20 Nov 2014.

  2. Battacharyya T, Iorio R, Healy WL. Rate of and risk factors for acute inpatient mortality after orthopaedic surgery. J Bone Joint Surg Am. 2002;84:562–72.

    Google Scholar 

  3. Streubel PN, Ricci WM, Wong A, Gardner MJ. Mortality after distal femur fracture in elderly patients. Clin Orthop Relat Res. 2011;479:1188–96.

    Article  Google Scholar 

  4. Zuckerman JD, Skovron ML, Koval KJ, et al. Postoperative complications and mortality associated with operative delay in older patients who have a fracture of the hip. J Bone Joint Surg Am. 1995;77-A:1551–6.

    Google Scholar 

  5. Hamlet WP, Lieberman JR, Freedman EL, et al. Influence of health status and the timing of surgery on mortality in hip fracture. Am J Orthop. 1997;26:621–7.

    CAS  PubMed  Google Scholar 

  6. McGuire KJ, Bernstein J, Polsky D, Silber JH. The 2004 Marshall Urist Award: Delays until surgery after hip fracture increases mortality. Clin Orthop Relat Res. 2004;428:294–301.

    Article  PubMed  Google Scholar 

  7. Moore L, Turgeon AF, Sirois M-J, Lavoie A. Trauma centre outcome performance: a comparison of young adults and geriatric patients in an inclusive trauma system. Injury. 2012;43(9):1580–5.

    Article  PubMed  Google Scholar 

  8. Bielza Galindo R, Ortiz Espada A, Arias Munana E, et al. Opening of an acute orthogeriatric unit in a general hospital. Rev Esp Geriatr Gerontol. 2013;48(1):26–9.

    Article  PubMed  Google Scholar 

  9. Pape HC, Friess T, Liener U, et al. Development of geriatric trauma centers – an effort by the German Society for Trauma and Orthopaedics. Injury. 2014;45(10):1513–5.

    Article  PubMed  Google Scholar 

  10. Desai PA, Vyas PA, Lane JM. Atypical femoral fractures: a review of the literature. Curr Osteoporos Rep. 2013;11(3):179–87.

    Article  PubMed  Google Scholar 

  11. Shane E, Burr D, Abrahamsen B, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2014;29(1):1–23.

    Article  PubMed  Google Scholar 

  12. Shane E, Burr D, Ebeling PR, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2010;25(11):2267–94.

    Article  PubMed  Google Scholar 

  13. Schilcher J, Koeppen V, Aspenberg P, Michaelsson K. Risk of atypical femoral fracture during and after bisphosphonate use. N Engl J Med. 2014;371(10):974–6.

    Article  PubMed  Google Scholar 

  14. Patel V, Graves L, Lukert B. Pelvic fractures associated with long-term bisphosphonate therapy – case report. J Musculoskelet Neuronal Interact. 2013;13(2):251–4.

    CAS  PubMed  Google Scholar 

  15. Tan SH, Saseendar S, Tan BH, et al. Ulnar fractures with bisphosphonate therapy: a systematic review of published case reports. Osteoporos Int. 2015;26:421–9.

    Article  CAS  PubMed  Google Scholar 

  16. Goh JC, Shah KM, Bose K. Biomechanical study on femoral neck fracture fixation in relation to bone mineral density. Clin Biomech. 1995;10:304–8.

    Article  Google Scholar 

  17. Spangler L, Cummings P, Tencer AF, et al. Biomechanical factors and failure of transcervical hip fracture repair. Injury. 2001;32:223–8.

    Article  CAS  PubMed  Google Scholar 

  18. Davis AT, Israel H, Cannada LK, Bledsoe JG. A biomechanical comparison of one-third tubular plates versus periarticular plates for fixation of osteoporotic distal fibula fractures. J Orthop Trauma. 2013;27(9):e201–7.

    Article  PubMed  Google Scholar 

  19. Wahnert D, Lange JH, Schulze M, et al. A laboratory investigation to assess the influence of cement augmentation of screw and plate fixation in a simulation of distal femoral fracture in osteoporotic and non-osteoporotic bone. Bone Joint J. 2013;95-B(10):1406–9.

    Article  CAS  PubMed  Google Scholar 

  20. Keating JF, Grant A, Masson M, et al. Randomized comparison of reduction and fixation, bipolar hemiarthroplasty, and total hip arthroplasty. Treatment of displaced intracapsular hip fractures in healthy older patients. J Bone Joint Surg Am. 2006;88:249–60.

    Article  CAS  PubMed  Google Scholar 

  21. Maier D, Jaeger M, Izadpanah K, et al. Proximal humeral fracture treatment in adults. J Bone Joint Surg Am. 2014;96(3):251–61.

    Article  PubMed  Google Scholar 

  22. [No authors listed]. Hip fractures in the elderly. Lancet. 1967;2(7505):34.

    Google Scholar 

  23. Orthopedia vs. anesthesia (orthopaedics, anaesthetics, conversation). YouTube. 2010. https://www.youtube.com/watch?v=3rTsvb2ef5k. Accessed 24 Nov 2014.

  24. Hoerer D, Volpin G, Stein H. Results of early and delayed surgical fixation of hip fractures in the elderly: a comparative retrospective study. Bull Hosp Jt Dis. 1993;53:29–33.

    CAS  PubMed  Google Scholar 

  25. Moran CG, Wenn RT, Sikand M, et al. Early mortality after hip fracture: is delay before surgery important? J Bone Joint Surg Am. 2005;87:483–9.

    Article  PubMed  Google Scholar 

  26. Koval KJ, Cooley MR. Clinical pathway after hip fracture. Disabil Rehabil. 2005;27:1053–60.

    Article  PubMed  Google Scholar 

  27. Hip Fracture Accelerated Surgical Treatment and Care Track (Hip ATTACK) Investigators. Accelerated care versus standard care among patients with hip fracture: the HIP ATTACK pilot trial. CMAJ. 2014;186(1):E52–60.

    Google Scholar 

  28. Cauley JA, Thompson DE, Ensrud KC, et al. Risk of mortality following clinical fractures. Osteoporos Int. 2001;11:556–61.

    Article  Google Scholar 

  29. Rao RD, Singrakhia MD. Painful osteoporotic vertebral fracture. J Bone Joint Surg Am. 2003;85:2010–22.

    PubMed  Google Scholar 

  30. Alvarez L, Alcaraz M, Perez-Hiqueras A, et al. Percutaneous vertebroplasty: functional improvement in patients with osteoporotic compression fractures. Spine. 2006;31:1113–8.

    Article  PubMed  Google Scholar 

  31. Deramond H, Depriester C, Galibert P, et al. Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am. 1998;36:533–46.

    Article  CAS  PubMed  Google Scholar 

  32. Barr JD, Barr MS, Lemley TJ, et al. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine. 2000;25:923–8.

    Article  CAS  PubMed  Google Scholar 

  33. Lieberman IH, Dudeny S, Reinhart MK, Bell G. Initial outcome and efficacy of ‘kyphoplasty’ in the treatment of painful osteoporotic vertebral compression fractures. Spine. 2001;26:1631–7.

    Article  CAS  PubMed  Google Scholar 

  34. Zampini JM, White AP, McGuire KJ. Comparsison of 5766 vertebral compression fractures treated with or without kyphoplasty. Clin Orthop Relat Res. 2010;468:1773–80.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Edidin AA, Ong KL, Lau E, Kurtz SM. Mortality risk for operated and nonoperated vertebarl fracture patients in the medicare population. J Bone Miner Res. 2011;26(7):1617–26.

    Article  PubMed  Google Scholar 

  36. Namkung-Matthai H, Appleyard R, Jansen J, et al. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone. 2001;28:80–6.

    Article  CAS  PubMed  Google Scholar 

  37. Meyer RA, Tsahakis PJ, Martin DE, et al. Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats. J Orthop Res. 2001;19:428–35.

    Article  PubMed  Google Scholar 

  38. Simmons E, Kuhele J, Lee J, et al. Evaluation of metabolic bone disease as a risk factor for lumbar fusion. Spine J. 2002;2:99S.

    Article  Google Scholar 

  39. Kucera T, Soukup T, Krs O, Urban K, Sponer P. Bone healing capacity in patients undergoing total hip arthroplasty. Acta Chir Orthop Traumatol Czech. 2012;79(1):52–8.

    CAS  Google Scholar 

  40. Jager M, Jelinek EM, Wess KM, et al. Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther. 2009;4(1):34–43.

    Article  PubMed  Google Scholar 

  41. Petri M, Namazian A, Wilke F, et al. Repair of segmental lone-bone defects by stem cell concentrate augmented scaffolds: a clinical and positron emission tomography-computed tomography analysis. Int Orthop. 2013;37:2231–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. LeBlanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–6.

    Article  CAS  Google Scholar 

  43. Gomez-Barrena E, Rosset P, Muller I, et al. Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. J Cell Mol Med. 2011;15(6):1266–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Friedlander GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am. 2001;83A:S151–8.

    Google Scholar 

  45. Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogeneetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002;84A:2123–34.

    Google Scholar 

  46. Burkus JK, Transfeldt EE, Kitchel SH, et al. Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine. 2002;27:2396–408.

    Article  PubMed  Google Scholar 

  47. Kanayama M, Hashimoto T, Shigenobu K, et al. A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: emphasis of surgical exploration and histologic assessment. Spine. 2006;31:1067–74.

    Article  PubMed  Google Scholar 

  48. Vaccaro AR, Patel T, Fischgrund J, et al. A 2-year follow-up pilot study evaluating the safety and efficacy of OP-1 putty (rhBMP-7) as an adjunct to iliac crest autograft in posterolateral lumbar fusions. Eur Spine J. 2005;14:623–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vaccaro AR, Anderson DG, Patel L, et al. Comparison of OP-1 putty (rhBMP-7) to iliac crest autograft for posterolateral lumbar arthrodesis: a minimul 2-year follow-up pilot study. Spine. 2005;30:2709–16.

    Article  PubMed  Google Scholar 

  50. Boden SD, Kang J, Sandju HS, et al. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine. 2002;27:2662–73.

    Article  PubMed  Google Scholar 

  51. Johnsson R, Stromqvist B, Aspenberg P. Randomized radiostereometric study comparing osteogenic protein-1 (BMP-7) and autograft bone in human nonistrumented posterolateral lumbar fusion: 2002 Volvo Award in clinical studies. Spine. 2002;27:2654–61.

    Article  PubMed  Google Scholar 

  52. Bono C, Lee C. Critical analysis of trends in fusion for degenerative disc disease over the last twenty years: influence of technique on fusion rate and clinical outcome. Spine J. 2002;2:47S–8.

    Article  Google Scholar 

  53. Egerman M, Baltzer AW, Adamaszek S, et al. Direct adenoviral transfer of bone morphogenetic protein-2 cDNA enhances fracture healing in ostroporotic sheep. Hum Gene Ther. 2006;17:507–17.

    Article  Google Scholar 

  54. Diwan AD, Leong A, Appleyard R, et al. Bone morphogenetic protein-7 accelerated fracture healing in osteoporotic rats. Indian J Orthop. 2013;47(6):540–6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Park SB, Park SH, Kim NH, Chung CK. BMP-2 induced early bone formation in spine fusion using rat ovariectomy osteoporisis model. Spine J. 2013;13(10):1273–80.

    Article  PubMed  Google Scholar 

  56. Zarrinkalam MR, Schultz CG, Ardern DW, et al. Recombinant human bone morphogenetic protein-type 2 (rhBMP-2) enhances local bone formation in the lumbar spine of osteoporotic sheep. J Orthop Res. 2013;31(9):1390–7.

    Article  CAS  PubMed  Google Scholar 

  57. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11(6):471–91.

    Article  PubMed  Google Scholar 

  58. Fujita T, Inoue T, Morii H, et al. Effect of intermittent weekly dose of human parathyroid hormone (1-34) on osteoporosis: a randomized double-masked prospective study using three dose levels. Osteoporos Int. 1999;9(4):296–306.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang D, Potty A, Vyas P, Lane J. The role of recombinant PTH in human fracture healing: a systematic review. J Orthop Trauma. 2014;28(1):57–62.

    Article  PubMed  Google Scholar 

  60. Aspenberg P, Genant HK, Johansson T, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radius fractures. J Bone Miner Res. 2010;25(2):404–14.

    Article  CAS  PubMed  Google Scholar 

  61. Peichl P, Holzer LA, Maier R, Holzer G. Parathyroid hormone 1-84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg Am. 2011;93:1583–7.

    Article  PubMed  Google Scholar 

  62. Sugiura T, Kashii M, Matsuo Y, et al. Intermittent administration of teriparatide enhances bone graft healing and adccelerates spinal fusion in rats with glucocorticoid-induced osteoporosis. Spine J 2015; 15(2): 298–306.

    Google Scholar 

  63. Qui Z, Wei L, Liu J, et al. Effect of intermittend PTH (1-34) on posterolateral spinal fusion with iliac crest bone graft in an ovariectomized rat mode. Osteoporos Int. 2013;24(10):2693–700.

    Article  CAS  Google Scholar 

  64. Lehman Jr RA, Dmitriev AE, Cardoso MJ, et al. Effect of teriparatide [rPTH(1,340] and calcitonin on intertransverse process fusion in a rabbit model. Spine (Phila PA 1976). 2010;35(2):146–52.

    Article  Google Scholar 

  65. Lina IA, Puvanesarajah V, Liauw JA, et al. Quantitative study of parathyroid hormone (1-34) and bone morphogenetic protein-2 on spinal fusion outcomes in a rabbit model of lumbar dorsolateral intertransverse process arthrodesis. Spine (Phila PA 1976). 2014;39(5):347–55.

    Article  Google Scholar 

  66. Huang RC, Khan SN, Sandhu HS, et al. Alendronate inhibits spine fusion in a rat model. Spine. 2005;30:2516–22.

    Article  PubMed  Google Scholar 

  67. Xue Q, Li H, Zou X, et al. The influence of alendronate treatment and bone graft volume on posterior lateral spine fusion in a porcine model. Spine. 2005;30:1116–21.

    Article  PubMed  Google Scholar 

  68. Koo KH, Lee JH, Chang BS, Lee CK. Effects of alendronate on lumbar posterolateral fusion using hydroxyapatite in rabbits. Artif Organs. 2012;36(12):1047–55.

    Article  CAS  PubMed  Google Scholar 

  69. Park SB, Park SH, Kang YK, Chung CK. The time-dependent effect of ibandronate on bone graft remodeling in an ovariectomized rat spinal arthrodesis model. Spine J. 2014;14(8):1748–57.

    Article  PubMed  Google Scholar 

  70. Park YS, Kim HS, Baek SW, et al. The effect of zolendronic acid on the volume of the fusion-mass in lumbar spinal fusion. Clin Orthop Surg. 2013;5(4):292–7.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Li C, Wang HR, Li XL, et al. The relation between zolendronic acid infusion and interbody fusion in patients undergoing transforaminal lumbar interbody fusion surgery. Acta Neurochir (Wein). 2012;154(4):731–8.

    Article  Google Scholar 

  72. Nagahama K, Kanayama M, Togawa D, et al. Does alendronate disturb the healing process of posterior lumbar interbody fusion? A prospective randomized trial. J Neurosurg Spine. 2011;14(4):500–7.

    Article  PubMed  Google Scholar 

  73. Xue D, Li F, Chen G, et al. DO bisphosphonates affect bone healing? A meta-analysis of randomized controlled trials. J Orthop Surg Res. 2014;9:45.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bassett CA, Becker RO. Generation of electric potentials by bone in response to mechanical stress. Science. 1962;137:1063–4.

    Article  CAS  PubMed  Google Scholar 

  75. Park P, Lau D, Brodt ED, Dettori JR. Electrical stimulation to enhance spinal fusion: a systematic review. Evid Based Spine Care J. 2014;5(2):87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Abeed RI, Naseer M, Abel EW. Capacitively coupled electrical stimulation treatment: results from patients with failed long bone fracture unions. J Orthop Trauma. 1998;12:510–3.

    Article  CAS  PubMed  Google Scholar 

  77. Phieffer LS, Goulet JA. Delayed unions of the tibia. J Bone Joint Surg Am. 2006;88:206–16.

    PubMed  Google Scholar 

  78. Johansson T, Jacobsson SA, Ivarsson I, et al. Internal fixation versus total hip arthroplasty in the treatment of displaced femoral neck fractures: a prospective randomized study of 100 hips. Acta Orthop Scand. 2000;71(6):597–602.

    Article  CAS  PubMed  Google Scholar 

  79. Ravikumar KJ, Marsh G. Internal fixation versus hemiarthroplasty versus total hip arthroplasty for displaced subcapital fractures of the femur – 13 year results of a prospective randomised study. Injury. 2000;31:793–7.

    Article  CAS  PubMed  Google Scholar 

  80. Miller BJ, Callaghan JJ, Cram P, et al. Changing trends in the treatment of femoral neck fractures: a review of the American Board of Orthopaedic Surgery database. J Bone Joint Surg Am. 2014;96(17):e149.

    Article  PubMed  Google Scholar 

  81. Utrilla AL, Reig JS, Munoz FM, et al. Trochanteric Gamma nail and compression hip screw for trochanteric fractures: a randomized, prospective, comparative study in 210 elderly patients with a new design of the Gamma nail. J Orthop Trauma. 2005;19:229–33.

    Article  PubMed  Google Scholar 

  82. Parker MJ, Bowers TR, Pryor GA. Sliding hip screw versus the Targon PF nail in the treatment of trochanteric fractures of the hip: a randomised trial of 600 fractures. J Bone Joint Surg Br. 2012;94(3):391–7.

    Article  CAS  PubMed  Google Scholar 

  83. Verettas DA, Ifantidis P, Chatzipapas CN, et al. Systematic effects of surgical treatment of hip fractures: gliding screw-plating vs intramedullary nailing. Injury. 2010;41(3):279–84.

    Article  PubMed  Google Scholar 

  84. Schlaich C, Minne HW, Bruckner T, et al. Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int. 1998;8:261–7.

    Article  CAS  PubMed  Google Scholar 

  85. Leidig-Bruckner G, Minne HW, Schlaich C, et al. Clinical grading of spinal osteoporosis: quality of life components and spinal deformity in women with chronic low back pain and women with vertebral osteoporosis. J Bone Miner Res. 1997;12:663–75.

    Article  CAS  PubMed  Google Scholar 

  86. Nguyen HV, Ludwig S, Gelb D. Osteoporotic vertebral burst fractures with neurologic compromise. J Spinal Disord Tech. 2003;16:10–9.

    Article  PubMed  Google Scholar 

  87. Korovessis P, Maraziotis T, Piperos G, et al. Spontaneous burst fracture of the thoracolumbar spine in osteoporosis is associated with neurological impairment: a report of seven cases and review of the literature. Eur Spine J. 1994;3:286–8.

    Article  CAS  PubMed  Google Scholar 

  88. Diamond TH, Champion B, Clark WA. Management of acute osteoporotic vertebral fractures: a nonrandomized trial comparing percutaneous vertebroplasty with conservative therapy. Am J Med. 2003;114(4):257–65.

    Article  PubMed  Google Scholar 

  89. Kasperk C, Hillmeier J, Noldge G, et al. Treatment of painful vertebral fractures by kyphoplasty in patients with primary osteoporosis: a prospective nonrandomized controlled study. J Bone Miner Res. 2005;20:604–12.

    Article  PubMed  Google Scholar 

  90. Buchbinder R, Osborne RH, Ebeling PR, et al. A randomized trial of vertebroplasty for painful osteoporotic vertebral compression fractures. N Engl J Med. 2009;361(6):557–68.

    Article  CAS  PubMed  Google Scholar 

  91. Kallmes DF, Comstock BA, Heagerty PJ, et al. A randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med. 2009;361(6):569–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bono CM, Heggenes M, Mick C, et al. North American Spine Society: newly released vertebroplasty randomized controlled trials: a tale of two trials. Spine J. 2010;10(3):238–40.

    Article  PubMed  Google Scholar 

  93. Buchbinder R, Kallmes DF. Vertebroplasty: when randomized placebo-controlled trials clash with common belief. Spine J. 2010;10(3):241–3.

    Article  PubMed  Google Scholar 

  94. Lindsey SS, Kalmes DF, Opatowsky MJ, et al. Impact of sham-comtrolled vertebroplasty trials on referral patterns at two academic medical centers. Proc (Bayl Univ Med Cent). 2013;26(2):103–5.

    Google Scholar 

  95. Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. JAMA. 2001;285:320–3.

    Article  CAS  PubMed  Google Scholar 

  96. Harrop JS, Prpa B, Reinhardt MK, et al. Primary and secondary osteoporosis’ incidence of subsequent vertebral compression fractures after kyphoplasty. Spine. 2004;29:2120–5.

    Article  PubMed  Google Scholar 

  97. Huybregts JGJ, Jacobs WCH, Peul WC, Vleggeert-Lankamp LA. Rationale and design of the INNOVATE Trial: an international cooperative study on surgical versus conservative treatment of odontoid fractures in the elderly. BMC Musculoskelet Disord. 2014;15:1471–8.

    Article  Google Scholar 

  98. Schoenfeld AJ, Bono CM, Reichmann WM, et al. Type II odontoid fractures of the cervical spine: do treatment type and medical comorbidities affect mortality in elderly patients? Spine. 2011;36(11):879–85.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Chapman J, Smith JS, Kopjar B, et al. The AOSpine North America geriatric odontoid fracture mortality study. Spine. 2013;38(13):1098–104.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Smith JS, Kepler CK, Kopjar B, et al. Effect of type II odontoid fracture nonunion on outcome among elderly patients treated without surgery: based on the AOSpine North America geriatric odontoid fracture study. Spine. 2013;38(26):2240–6.

    PubMed  Google Scholar 

  101. Chen CW, Huang TL, Su LT, et al. Incidence of subsequent hip fractures is significantly increased within the first month after distal radius fracture in patients older than 60 years. J Trauma Acute Care Surg. 2013;74(1):317–21.

    Article  PubMed  Google Scholar 

  102. Kannus P, Parkkari J, Sievanen H, et al. Epidemiology of hip fractures. Bone. 1996;18(Supplement):57S–63.

    Article  CAS  PubMed  Google Scholar 

  103. Moroni A, VAnnini F, Faldini C, et al. Cast vs external fixation: a comparative study in elderly osteoporotic distal radial fracture patients. Scand J Surg. 2004;93:64–7.

    CAS  PubMed  Google Scholar 

  104. Hegeman JH, Oskam J, Vierhout PA, et al. External fixation for unstable intra-articular distal radial fractures in women older than 55 years. Acceptable functional end results in the majority of patients despite significant secondary displacement. Injury. 2005;36:339–44.

    Article  CAS  PubMed  Google Scholar 

  105. Ring D, Jupiter JB. Treatment of osteoporotic distal radius fractures. Osteoporos Int. 2005;16(Suppl):S80–4.

    Article  PubMed  Google Scholar 

  106. Gradl G, Gradl G, Wendt M, et al. Non-bridging external fixation employing multiplanar K-wires versus volar locked plating for dorsally displaced fractures of the distal radius. Arch Orthop Trauma Surg. 2013;133(5):595–602.

    Article  PubMed  Google Scholar 

  107. Sanchez-Sotelo J, Munuera L, Madero R. Treatment of fractures of the distal radius with a remodellable bone cement: a prospective, randomised study using Norian SRS. J Bone Surg Br. 2000;82-B:856–63.

    Article  Google Scholar 

  108. Arora R, Milz S, Sitte I, Blauth M, Lutz M. Behavior of ChronOS Inject in metaphyseal bone defects of the distal radius fractures: tissue reaction after 6-15 months. Injury. 2012;43(10):1683–8.

    Article  PubMed  Google Scholar 

  109. Fitzpatrick SK, Casemyr NE, Zurakowski D, et al. The effect of osteoporosis on outcomes of operatively treated distal radius fractures. J Hand Surg Am. 2012;37(10):2027–34.

    Article  PubMed  Google Scholar 

  110. Cabitza P, Tamin H. Occult fractures of tibial plateau detected employing magnetic resonance imaging. Arch Orthop Trauma Surg. 2000;210:355–7.

    Article  Google Scholar 

  111. Luria S, Liebergall M, Elishoov O, et al. Osteoporotic tibial plateau fractures: an underestimated cause of knee pain in the elderly. Am J Orthop. 2005;34:186–8.

    PubMed  Google Scholar 

  112. Broome B, Mauffrey C, Statton J, et al. Inflation osteoplasty: in vitro evaluation of a new technique for reducing depressed intra-articular fractures of the tibial plateau and distal radius. J Orthop Traumatol. 2012;13:89–95.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Veitch SW, Stroud RM, Toms AD. Compaction bone grafting in tibial plateau fracture fixation. J Trauma. 2010;68(4):980–3.

    Article  PubMed  Google Scholar 

  114. Schandelmaier P, Stephan C, Krettek C, et al. Distal fractures of the femur. Unflallchirurg. 2000;103:428–36.

    Article  CAS  Google Scholar 

  115. Ali AM, El-Shafie M, Willett KM. Failure of fixation of tibial plateau fractures. J Orthop Trauma. 2002;16:323–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Bono MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zampini, J.M., Bono, C.M. (2016). Fracture Care in the Elderly. In: Duque, G., Kiel, D. (eds) Osteoporosis in Older Persons. Springer, Cham. https://doi.org/10.1007/978-3-319-25976-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25976-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25974-1

  • Online ISBN: 978-3-319-25976-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics