Skip to main content

Biology of Bone

  • Chapter
  • First Online:
  • 1255 Accesses

Abstract

Bone is the main component of the skeleton, together with connecting tissues including cartilage, ligaments and tendons, providing mechanical and structural support for the remaining organs and systems in the body. This mechanical and structural support function is indispensable for life, both during the growth and development period as well as during adult life. However, bone also provides the unique architecture and microenvironment that preserve the niches which maintain immature stem cells. This niche aspect of bone is an inadequately recognized function, although an essential one, since stem cells are required for tissue repair and regeneration during adult life. In addition to providing mechanical support, bone contains and supports the main reservoir of cells needed to sustain tissue integrity and function throughout our lives. Thus, understanding how bone is made and maintained during life is central to developing adequate strategies to preserve a healthy skeleton as we age, so that proper mechanical support, structural integrity and tissue repair capacity are maintained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol. 2000;16:191–220.

    Article  CAS  PubMed  Google Scholar 

  2. Pechak DG, Kujawa MJ, Caplan AI. Morphological and histochemical events during first bone formation in embryonic chick limbs. Bone. 1986;7:441–58.

    Article  CAS  PubMed  Google Scholar 

  3. Shapiro IM, Landis WJ, Risbud MV. Matrix vesicles: are they anchored exosomes? Bone. 2015;79:29–36.

    Article  CAS  PubMed  Google Scholar 

  4. Foster JW, Dominguez-Steglich MA, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994;372:525–30.

    Article  CAS  PubMed  Google Scholar 

  5. Wagner T, Wirth J, Meyer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79:1111–20.

    Article  CAS  PubMed  Google Scholar 

  6. Bi W, Deng JM, Zhang Z, et al. Sox9 is required for cartilage formation. Nat Genet. 1999;22:85–9.

    Article  CAS  PubMed  Google Scholar 

  7. Iyama K, Ninomiya Y, Olsen BR, et al. Spatiotemporal pattern of type X collagen gene expression and collagen deposition in embryonic chick vertebrae undergoing endochondral ossification. Anat Rec. 1991;229:462–72.

    Article  CAS  PubMed  Google Scholar 

  8. Gerber HP, Vu TH, Ryan AM, et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623–8.

    Article  CAS  PubMed  Google Scholar 

  9. Park SR, Oreffo RO, Triffitt JT. Interconversion potential of cloned human marrow adipocytes in vitro. Bone. 1999;24:549–54.

    Article  CAS  PubMed  Google Scholar 

  10. Doherty MJ, Ashton BA, Walsh S, et al. Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res. 1998;13:828–38.

    Article  CAS  PubMed  Google Scholar 

  11. Schiller PC, D’Ippolito G, Brambilla R, et al. Inhibition of gap-junctional communication induces the trans-differentiation of osteoblasts to an adipocytic phenotype in vitro. J Biol Chem. 2001;276:14133–8.

    CAS  PubMed  Google Scholar 

  12. Dallas SL, Bonewald LF. Dynamics of the transition from osteoblasts to osteocyte. Ann N Y Acad Sci. 2010;1192:437–43 (mini-review).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Compton JT, Lee FY. A review of osteocyte function and the emerging importance of sclerostin. J Bone Joint Surg. 2014;96:1659–68 (review).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Holtrop ME. The ultrastructure of bone. Ann Clin Lab Sci. 1975;5:264–71.

    CAS  PubMed  Google Scholar 

  15. Parfitt AM. The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease. Part I of IV parts: mechanisms of calcium transfer between blood and bone and their cellular basis: morphological and kinetic approaches to bone turnover. Metabolism. 1976;25:809–44.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang D, Weinbaum S, Cowin SC. Electrical signal transmission in a bone cell network: the influence of a discrete gap junction. Ann Biomed Eng. 1998;26:644–59.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang D, Cowin SC, Weinbaum S. Electrical signal transmission and gap junction regulation in a bone cell network: a cable model for an osteon. Ann Biomed Eng. 1997;25:357–74.

    Article  CAS  PubMed  Google Scholar 

  18. Schiller PC, Mehta PP, Roos BA, et al. Hormonal regulation of intercellular communication: parathyroid hormone increases connexin 43 gene expression and gap-junctional communication in osteoblastic cells. Mol Endocrinol. 1992;6:1433–40.

    CAS  PubMed  Google Scholar 

  19. Schiller PC, D’Ippolito G, Roos BA, et al. Anabolic or catabolic responses of MC3T3-E1 osteoblastic cells to parathyroid hormone depend on time and duration of treatment. J Bone Miner Res. 1999;14:1504–12.

    Article  CAS  PubMed  Google Scholar 

  20. Schiller PC, D’Ippolito G, Balkan W, et al. Gap-junctional communication mediates parathyroid hormone stimulation of mineralization in osteoblastic cultures. Bone. 2001;28:38–44.

    Article  CAS  PubMed  Google Scholar 

  21. Schiller PC, D’Ippolito G, Balkan W, et al. Gap-junctional communication is required for the maturation process of osteoblastic cells in culture. Bone. 2001;28:362–9.

    Article  CAS  PubMed  Google Scholar 

  22. Civitelli R, Beyer EC, Warlow PM, et al. Connexin43 mediates direct intercellular communication in human osteoblastic cell networks. J Clin Invest. 1993;91:1888–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lecanda F, Warlow PM, Sheikh S, et al. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol. 2000;151:931–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Furlan F, Lecanda F, Screen J, et al. Proliferation, differentiation and apoptosis in connexin43-null osteoblasts. Cell Commun Adhes. 2001;8:367–71.

    Article  CAS  PubMed  Google Scholar 

  25. Plotkin LI, Manolagas SC, Bellido T. Transduction of cell survival signals by connexin-43 hemichannels. J Biol Chem. 2002;277:8648–57.

    Article  CAS  PubMed  Google Scholar 

  26. Noble BS, Stevens H, Loveridge N, et al. Identification of apoptotic changes in osteocytes in normal and pathological human bone. Bone. 1997;20:273–82.

    Article  CAS  PubMed  Google Scholar 

  27. Noble BS, Peet N, Stevens HY, et al. Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol. 2003;284:C934–43.

    Article  CAS  PubMed  Google Scholar 

  28. Plotkin LI, Aguirre JI, Kousteni S, et al. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. J Biol Chem. 2005;280:7317–25.

    Article  CAS  PubMed  Google Scholar 

  29. Plotkin LI, Mathov I, Aguirre JI, et al. Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases, and ERKs. Am J Physiol Cell Physiol. 2005;289:C633–43.

    Article  CAS  PubMed  Google Scholar 

  30. Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–54.

    Article  CAS  PubMed  Google Scholar 

  31. Otto F, Thornell AP, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89:765–71.

    Article  CAS  PubMed  Google Scholar 

  32. Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–64.

    Article  CAS  PubMed  Google Scholar 

  33. Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89:773–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ducy P, Starbuck M, Priemel M, et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev. 1999;13:1025–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim S, Koga T, Isobe M, et al. Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev. 2003;17:1979–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee KS, Hong SH, Bae SC. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene. 2002;21:7156–63.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang YW, Yasui N, Ito K, et al. A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci U S A. 2000;97:10549–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alliston T, Choy L, Ducy P, et al. TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J. 2001;20:2254–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zamurovic N, Cappellen D, Rohner D, et al. Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J Biol Chem. 2004;279:37704–15.

    Article  CAS  PubMed  Google Scholar 

  40. Sowa H, Kaji H, Hendy GN, et al. Menin is required for bone morphogenetic protein 2- and transforming growth factor beta-regulated osteoblastic differentiation through interaction with Smads and Runx2. J Biol Chem. 2004;279:40267–75.

    Article  CAS  PubMed  Google Scholar 

  41. Sierra J, Villagra A, Paredes R, et al. Regulation of the bone-specific osteocalcin gene by p300 requires Runx2/Cbfa1 and the vitamin D3 receptor but not p300 intrinsic histone acetyltransferase activity. Mol Cell Biol. 2003;23:3339–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang W, Wang YG, Reginato AM, et al. Groucho homologue Grg5 interacts with the transcription factor Runx2-Cbfa1 and modulates its activity during postnatal growth in mice. Dev Biol. 2004;270:364–81.

    Article  CAS  PubMed  Google Scholar 

  43. Bialek P, Kern B, Yang X, et al. A twist code determines the onset of osteoblast differentiation. Dev Cell. 2004;6:423–35.

    Article  CAS  PubMed  Google Scholar 

  44. Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108:17–29.

    Article  CAS  PubMed  Google Scholar 

  45. Akiyama Ddagger H, Kim Ddagger JE, Nakashima K, et al. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci U S A. 2005;102:14665–70.

    Article  CAS  Google Scholar 

  46. Huang LF, Fukai N, Selby PB, et al. Mouse clavicular development: analysis of wild-type and cleidocranial dysplasia mutant mice. Dev Dyn. 1997;210:33–40.

    Article  CAS  PubMed  Google Scholar 

  47. Inada M, Yasui T, Nomura S, et al. Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn. 1999;214:279–90.

    Article  CAS  PubMed  Google Scholar 

  48. Kim IS, Otto F, Zabel B, et al. Regulation of chondrocyte differentiation by Cbfa1. Mech Dev. 1999;80:159–70.

    Article  CAS  PubMed  Google Scholar 

  49. Jimenez MJ, Balbin M, Lopez JM, et al. Collagenase 3 is a target of Cbfa1, a transcription factor of the runt gene family involved in bone formation. Mol Cell Biol. 1999;19:4431–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Porte D, Tuckermann J, Becker M, et al. Both AP-1 and Cbfa1-like factors are required for the induction of interstitial collagenase by parathyroid hormone. Oncogene. 1999;18:667–78.

    Article  CAS  PubMed  Google Scholar 

  51. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    Article  CAS  PubMed  Google Scholar 

  52. Church VL, Francis-West P. Wnt signalling during limb development. Int J Dev Biol. 2002;46:927–36.

    CAS  PubMed  Google Scholar 

  53. Boyden LM, Mao J, Belsky J, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346:1513–21.

    Article  CAS  PubMed  Google Scholar 

  54. Little RD, Recker RR, Johnson ML. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;347:943–4; author reply -4.

    Article  PubMed  Google Scholar 

  55. Kato M, Patel MS, Levasseur R, et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002;157:303–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Holmen SL, Zylstra CR, Mukherjee A, et al. Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem. 2005;280:21162–8.

    Article  CAS  PubMed  Google Scholar 

  57. Day TF, Guo X, Garrett-Beal L, et al. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8:739–50.

    Article  CAS  PubMed  Google Scholar 

  58. Hill TP, Spater D, Taketo MM, et al. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell. 2005;8:727–38.

    Article  CAS  PubMed  Google Scholar 

  59. Hu H, Hilton MJ, Tu X, et al. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development. 2005;132:49–60.

    Article  CAS  PubMed  Google Scholar 

  60. Canalis E. Wnt signaling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol. 2013;9:575–83.

    Article  CAS  PubMed  Google Scholar 

  61. Mannstadt M, Juppner H, Gardella TJ. Receptors for PTH and PTHrP: their biological importance and functional properties. Am J Physiol. 1999;277:F665–75.

    CAS  PubMed  Google Scholar 

  62. Swarthout JT, D’Alonzo RC, Selvamurugan N, et al. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene. 2002;282:1–17.

    Article  CAS  PubMed  Google Scholar 

  63. Qin L, Qiu P, Wang L, et al. Gene expression profiles and transcription factors involved in parathyroid hormone signaling in osteoblasts revealed by microarray and bioinformatics. J Biol Chem. 2003;278:19723–31.

    Article  CAS  PubMed  Google Scholar 

  64. Wang BL, Dai CL, Quan JX, et al. Parathyroid hormone regulates osterix and Runx2 mRNA expression predominantly through protein kinase A signaling in osteoblast-like cells. J Endocrinol Invest. 2006;29:101–8.

    Article  CAS  PubMed  Google Scholar 

  65. Locklin RM, Khosla S, Turner RT, et al. Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone. J Cell Biochem. 2003;89:180–90.

    Article  CAS  PubMed  Google Scholar 

  66. Mikuni-Takagaki Y, Naruse K, Azuma Y, et al. The role of calcium channels in osteocyte function. J Musculoskelet Neuronal Interact. 2002;2:252–5.

    CAS  PubMed  Google Scholar 

  67. Sekiya H, Mikuni-Takagaki Y, Kondoh T, et al. Synergistic effect of PTH on the mechanical responses of human alveolar osteocytes. Biochem Biophys Res Commun. 1999;264:719–23.

    Article  CAS  PubMed  Google Scholar 

  68. Chen X, Macica CM, Ng KW, et al. Stretch-induced PTH-related protein gene expression in osteoblasts. J Bone Miner Res. 2005;20:1454–61.

    Article  CAS  PubMed  Google Scholar 

  69. D’Ippolito G, Schiller PC, Perez-stable C, et al. Cooperative actions of hepatocyte growth factor and 1,25-dihydroxyvitamin D3 in osteoblastic differentiation of human vertebral bone marrow stromal cells. Bone. 2002;31:269–75.

    Article  PubMed  Google Scholar 

  70. D’Ippolito G, Diabira S, Howard GA, et al. Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone. 2006;39:513–22.

    Article  PubMed  CAS  Google Scholar 

  71. Erben RG, Soegiarto DW, Weber K, et al. Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol Endocrinol. 2002;16:1524–37.

    Article  CAS  PubMed  Google Scholar 

  72. Paredes R, Arriagada G, Cruzat F, et al. Bone-specific transcription factor Runx2 interacts with the 1alpha,25-dihydroxyvitamin D3 receptor to up-regulate rat osteocalcin gene expression in osteoblastic cells. Mol Cell Biol. 2004;24:8847–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Haussler MR, Whitfield GK, Kaneko I, et al. Molecular mechanisms of vitamin D action. Calcif Tissue Int. 2013;92:77–98 (review).

    Article  CAS  PubMed  Google Scholar 

  74. Jones G. Vitamin D, analogs. Endocrinol Metab Clin North Am. 2010;39:447–72 (review).

    Article  CAS  PubMed  Google Scholar 

  75. Curtis KM, Aenlle KK, Roos BA, Howard GA. 24R,25-dihydroxyvitamin D3 promotes the osteoblastic differentiation of human mesenchymal stem cells. Mol Endocrinol. 2014;28:644–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ucer S, Iyer S, Bartell SM, et al. The effects of androgens on murine cortical bone do not require AR or ERα signaling in osteoblasts and osteoclasts. J Bone Miner Res. 2015;30:1138–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pan W, Quarles LD, Song LH, et al. Genistein stimulates the osteoblastic differentiation via NO/cGMP in bone marrow culture. J Cell Biochem. 2005;94:307–16.

    Article  CAS  PubMed  Google Scholar 

  78. Zallone A. Direct and indirect estrogen actions on osteoblasts and osteoclasts. Ann N Y Acad Sci. 2006;1068:173–9.

    Article  CAS  PubMed  Google Scholar 

  79. Seeman E. Estrogen, androgen, and the pathogenesis of bone fragility in women and men. Curr Osteoporos Rep. 2004;2:90–6.

    Article  PubMed  Google Scholar 

  80. Jessop HL, Sjoberg M, Cheng MZ, et al. Mechanical strain and estrogen activate estrogen receptor alpha in bone cells. J Bone Miner Res. 2001;16:1045–55.

    Article  CAS  PubMed  Google Scholar 

  81. Zaman G, Jessop HL, Muzylak M, et al. Osteocytes use estrogen receptor alpha to respond to strain but their ERalpha content is regulated by estrogen. J Bone Miner Res. 2006;21:1297–306.

    Article  CAS  PubMed  Google Scholar 

  82. Melville KM, Kelly NH, Surita G, et al. Effects of deletion of ERα in osteoblast-lineage cells on bone mass and adaptation to mechanical loading differ in female and male mice. J Bone Miner Res. 2015;30:1468–80.

    Article  CAS  PubMed  Google Scholar 

  83. Li X, Cao X. BMP signaling and skeletogenesis. Ann N Y Acad Sci. 2006;1068:26–40.

    Article  CAS  PubMed  Google Scholar 

  84. Zaidi SK, Sullivan AJ, van Wijnen AJ, et al. Integration of Runx and Smad regulatory signals at transcriptionally active subnuclear sites. Proc Natl Acad Sci U S A. 2002;99:8048–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Afzal F, Pratap J, Ito K, et al. Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. J Cell Physiol. 2005;204:63–72.

    Article  CAS  PubMed  Google Scholar 

  86. Lee MH, Kim YJ, Kim HJ, et al. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem. 2003;278:34387–94.

    Article  CAS  PubMed  Google Scholar 

  87. Ryoo HM, Lee MH, Kim YJ. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene. 2006;366:51–7.

    Article  CAS  PubMed  Google Scholar 

  88. Li T, Surendran K, Zawaideh MA, et al. Bone morphogenetic protein 7: a novel treatment for chronic renal and bone disease. Curr Opin Nephrol Hypertens. 2004;13:417–22.

    Article  CAS  PubMed  Google Scholar 

  89. Spencer EM, Liu CC, Si ECC, Howard GA. In vivo actions of insulin-like growth factor-I (IGF-I) on bone formation and resorption in Rats. Bone. 1991;12:21–6.

    Article  CAS  PubMed  Google Scholar 

  90. Green ED, Maffei M, Braden VV, et al. The human obese (OB) gene: RNA expression pattern and mapping on the physical, cytogenetic, and genetic maps of chromosome 7. Genome Res. 1995;5:5–12.

    Article  CAS  PubMed  Google Scholar 

  91. Maffei M, Halaas J, Ravussin E, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995;1:1155–61.

    Article  CAS  PubMed  Google Scholar 

  92. Wolf G. Leptin: the weight-reducing plasma protein encoded by the obese gene. Nutr Rev. 1996;54:91–3.

    Article  CAS  PubMed  Google Scholar 

  93. Steppan CM, Crawford DT, Chidsey-Frink KL, et al. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept. 2000;92:73–8.

    Article  CAS  PubMed  Google Scholar 

  94. Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100:197–207.

    Article  CAS  PubMed  Google Scholar 

  95. Shi Y, Yadav VK, Suda N, et al. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Natl Acad Sci U S A. 2008;105:20529–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hess R, Pino AM, Rios S, et al. High affinity leptin receptors are present in human mesenchymal stem cells (MSCs) derived from control and osteoporotic donors. J Cell Biochem. 2005;94:50–7.

    Article  CAS  PubMed  Google Scholar 

  97. Zheng B, Jiang J, Luo K, et al. Increased osteogenesis in osteoporotic bone marrow stromal cells by overexpression of leptin. Cell Tissue Res. 2015. doi:10.1007/s00441-01502167-y.

    PubMed  Google Scholar 

  98. Canalis E. Mechanisms of glucocorticoid action in bone. Curr Osteoporos Rep. 2005;3:98–102.

    Article  PubMed  Google Scholar 

  99. Ohnaka K, Taniguchi H, Kawate H, et al. Glucocorticoid enhances the expression of dickkopf-1 in human osteoblasts: novel mechanism of glucocorticoid-induced osteoporosis. Biochem Biophys Res Commun. 2004;318:259–64.

    Article  CAS  PubMed  Google Scholar 

  100. Ohnaka K, Tanabe M, Kawate H, et al. Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem Biophys Res Commun. 2005;329:177–81.

    Article  CAS  PubMed  Google Scholar 

  101. Bassett JH, Williams GR. The molecular actions of thyroid hormone in bone. Trends Endocrinol Metab. 2003;14:356–64.

    Article  CAS  PubMed  Google Scholar 

  102. Stevens DA, Hasserjian RP, Robson H, et al. Thyroid hormones regulate hypertrophic chondrocyte differentiation and expression of parathyroid hormone-related peptide and its receptor during endochondral bone formation. J Bone Miner Res. 2000;15:2431–42.

    Article  CAS  PubMed  Google Scholar 

  103. Robson H, Siebler T, Stevens DA, et al. Thyroid hormone acts directly on growth plate chondrocytes to promote hypertrophic differentiation and inhibit clonal expansion and cell proliferation. Endocrinology. 2000;141:3887–97.

    CAS  PubMed  Google Scholar 

  104. Gruber R, Czerwenka K, Wolf F, et al. Expression of the vitamin D receptor, of estrogen and thyroid hormone receptor alpha- and beta-isoforms, and of the androgen receptor in cultures of native mouse bone marrow and of stromal/osteoblastic cells. Bone. 1999;24:465–73.

    Article  CAS  PubMed  Google Scholar 

  105. Salto C, Kindblom JM, Johansson C, et al. Ablation of TRalpha2 and a concomitant overexpression of alpha1 yields a mixed hypo- and hyperthyroid phenotype in mice. Mol Endocrinol. 2001;15:2115–28.

    CAS  PubMed  Google Scholar 

  106. Pereira RC, Jorgetti V, Canalis E. Triiodothyronine induces collagenase-3 and gelatinase B expression in murine osteoblasts. Am J Physiol. 1999;277:E496–504.

    CAS  PubMed  Google Scholar 

  107. Fang S, Deng Y, Gu P, Fan X. MicroRNAs regulate bone development and regeneration. Int J Mol Sci. 2015;16:8227–53 (review).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Engsig MT, Chen QJ, Vu TH, et al. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol. 2000;151:879–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tondravi MM, McKercher SR, Anderson K, et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature. 1997;386:81–4.

    Article  CAS  PubMed  Google Scholar 

  110. DeKoter RP, Singh H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science. 2000;288:1439–41.

    Article  CAS  PubMed  Google Scholar 

  111. Luchin A, Suchting S, Merson T, et al. Genetic and physical interactions between Microphthalmia transcription factor and PU.1 are necessary for osteoclast gene expression and differentiation. J Biol Chem. 2001;276:36703–10.

    Article  CAS  PubMed  Google Scholar 

  112. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19.

    Article  CAS  PubMed  Google Scholar 

  113. Dai XM, Ryan GR, Hapel AJ, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002;99:111–20.

    Article  CAS  PubMed  Google Scholar 

  114. Blair HC, Zaidi M. Osteoclastic differentiation and function regulated by old and new pathways. Rev Endocr Metab Disord. 2006;7:23–32.

    Article  CAS  PubMed  Google Scholar 

  115. Choi SJ, Han JH, Roodman GD. ADAM8: a novel osteoclast stimulating factor. J Bone Miner Res. 2001;16:814–22.

    Article  CAS  PubMed  Google Scholar 

  116. Rao H, Lu G, Kajiya H, et al. Alpha9beta1: a novel osteoclast integrin that regulates osteoclast formation and function. J Bone Miner Res. 2006;21:1657–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kobayashi Y, Uehara S, Koide M, Takahaski N. The regulation of osteoclasts differentiation by Wnt signals. BonKEy Rep. 2015;4, Article number:713 (review).

    Google Scholar 

  118. Whyte MP. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev. 1994;15:439–61.

    CAS  PubMed  Google Scholar 

  119. McKane WR, Khosla S, Egan KS, et al. Role of calcium intake in modulating age-related increases in parathyroid function and bone resorption. J Clin Endocrinol Metab. 1996;81:1699–703.

    CAS  PubMed  Google Scholar 

  120. Khosla S, Melton 3rd LJ, Atkinson EJ, et al. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab. 1998;83:2266–74.

    CAS  PubMed  Google Scholar 

  121. Eastell R, Simmons PS, Colwell A, et al. Nyctohemeral changes in bone turnover assessed by serum bone Gla-protein concentration and urinary deoxypyridinoline excretion: effects of growth and ageing. Clin Sci (Lond). 1992;83:375–82.

    Article  CAS  Google Scholar 

  122. Duda Jr RJ, O’Brien JF, Katzmann JA, et al. Concurrent assays of circulating bone Gla-protein and bone alkaline phosphatase: effects of sex, age, and metabolic bone disease. J Clin Endocrinol Metab. 1988;66:951–7.

    Article  CAS  PubMed  Google Scholar 

  123. Vidal C, Bermeo S, Fatkin D, Duque G. Role of the nuclear envelope in the pathogenesis of age-related bone loss and osteoporosis. BoneKEy Rep. 2012;1, Article number:62 (review).

    Google Scholar 

  124. Pacheco LM, Gomez LA, Dias J, et al. Progerin expression disrupts critical adult stem cell functions involved in tissue repair. Aging. 2014;6:1049–63.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Riggs BL, Wahner HW, Seeman E, et al. Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest. 1982;70:716–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–6.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–41.

    Article  CAS  PubMed  Google Scholar 

  128. Adams GB, Martin RP, Alley IR, et al. Therapeutic targeting of a stem cell niche. Nat Biotechnol. 2007;25:238–43.

    Article  CAS  PubMed  Google Scholar 

  129. Yin T, Li L. The stem cell niches in bone. J Clin Invest. 2006;116:1195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kiel MJ, Yilmaz OH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121:1109–21.

    Article  CAS  PubMed  Google Scholar 

  131. Cipolleschi MG, Dello Sbarba P, Olivotto M. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood. 1993;82:2031–7.

    CAS  PubMed  Google Scholar 

  132. Cipolleschi MG, D’Ippolito G, Bernabei PA, et al. Severe hypoxia enhances the formation of erythroid bursts from human cord blood cells and the maintenance of BFU-E in vitro. Exp Hematol. 1997;25:1187–94.

    CAS  PubMed  Google Scholar 

  133. Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood. 2001;98:2615–25.

    Article  CAS  PubMed  Google Scholar 

  134. D’Ippolito G, Howard GA, Roos BA, et al. Isolation and characterization of marrow-isolated adult multilineage inducible (MIAMI) cells. Exp Hematol. 2006;34:1608–10.

    Article  PubMed  CAS  Google Scholar 

  135. D’Ippolito G, Diabira S, Howard GA, et al. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci. 2004;117:2971–81.

    Article  PubMed  CAS  Google Scholar 

  136. Breyer A, Estharabadi N, Oki M, et al. Multipotent adult progenitor cell isolation and culture procedures. Exp Hematol. 2006;34:1596–601.

    Article  CAS  PubMed  Google Scholar 

  137. Paquet J, Deschepper M, Moya A, et al. Oxygen tension regulates human mesenchymal stem cell paracrine functions. Stem Cells Transl Med. 2015;4:809–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Schiller PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Howard, G.A., Schiller, P.C. (2016). Biology of Bone. In: Duque, G., Kiel, D. (eds) Osteoporosis in Older Persons. Springer, Cham. https://doi.org/10.1007/978-3-319-25976-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25976-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25974-1

  • Online ISBN: 978-3-319-25976-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics