Initial User Requirement Analysis for Waterbodies Data Visualization

  • Harlisa ZulkifliEmail author
  • Rabiah Abdul Kadir
  • Norshita Mat Nayan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9429)


This study aims to analyse user requirement for waterbodies data visualization to help decision making process for the water related issues. The preliminary survey has been conducted at National Hydraulic Research Institute of Malaysia (NAHRIM) as the case study of this research. The methodology used to gather this requirement is by conducting a survey comprises 20 NAHRIM’s staff. The survey is expected to help the researcher to gain more insight on the critical requirement to develop waterbodies data visualization, which will drive the whole research to support the decision making process The results of the analysis indicate a very high demand for the waterbodies data visualization in NAHRIM that holds waterbodies data for Malaysia to help the decision making process.


Data visualization User requirement analysis Decision making 


  1. 1.
    Alenxandru, T.: Data Visualization Principles and Practice. CRC Press Taylor & Francis Group, Boca Raton (1994)Google Scholar
  2. 2.
    Khan, M., Khan, S.S.: Data and information visualization methods, and interactive mechanisms: a survey. Int. J. Comput. Appl. 34, 1–14 (2011)Google Scholar
  3. 3.
    Wang, C., Yu, H., Ma, K., Member, S.: Importance-driven time-varying data visualization. IEEE Trans. Vis. Comput. Graph. 14, 1547–1554 (2008)CrossRefGoogle Scholar
  4. 4.
    Muller, W., Schumann, H.: Visualization methods for time-dependent data - an overview. In: Proceedings of the 2003 Winter Simulation Conference, pp. 737–745. IEEE (2003)Google Scholar
  5. 5.
    Silva, S.F., Catarci, T., La, R.: Visualization of linear time-oriented data: a survey. In: Proceedings of the First International Conference on Web Information Systems Engineering, pp. 310–319 (2000)Google Scholar
  6. 6.
    Choy, J., Chawla, V., Whitman, L.: Data visualization techniques: from basics to big data with SAS visual analytics [White paper], SAS, Cary, NC (2012).
  7. 7.
    Giles, J.: The Principle of Good Data Management. ODPM Publications, Wetherby (2005)Google Scholar
  8. 8.
    The Pennsylvania State University Library.
  9. 9.
    BeyeNetwork Global Coverage of the Business Intelligence Ecosystem.
  10. 10.
    Krosnick, J. A., Presser, S.: Questionnaire design. In: Wright, J.D., Marsden, P.V. (eds.) Handbook of Survey Research (Second Edition), Emerald Group, West Yorkshire, England (2010)Google Scholar
  11. 11.
    Piaw, C.Y.: Kaedah dan statistik penyelidikan Buku 3 Asas Statistik Penyelidikan Analisis Data Skala Ordinal dan Skala Nominal. Mc Graw Hill, Kuala Lumpur (2008)Google Scholar
  12. 12.
    Vagias, W.: Likert-type scale response anchors, pp. 3–4. Clemson International Institute for Tourism & Research Development (2006)Google Scholar
  13. 13.
    Revilla, M.A., Saris, W.E., Krosnick, J.A.: Choosing the number of categories in agree-disagree scales. Sociol. Methods Res. 43, 73–97 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Piaw, C.Y.: Kaedah dan Statistik Penyelidikan Buku 1. Mc Graw Hill, Kuala Lumpur (2014)Google Scholar
  15. 15.
    Odiri, O.E.: Self-efficacy and performance among mathematics’ diploma students of Delta State University, Abraka, Nigeria. J. Sociol. Psychol. Anthropol. Pract. 2, 108–112 (2010)Google Scholar
  16. 16.
    Al-Tarawneh, H.A.: The main factors beyond decision making. J. Manage. Res. 4, 1–23 (2011)CrossRefGoogle Scholar
  17. 17.
    Sarkar, S.K., Begum, R.A., Pereira, J.J., Jaafar, A.H., Saari, M.Y.: Impacts of and adaptations to sea level rise in Malaysia. Asian J. Water Environ. Pollut. 11, 2014 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Harlisa Zulkifli
    • 1
    Email author
  • Rabiah Abdul Kadir
    • 1
  • Norshita Mat Nayan
    • 1
  1. 1.Institute of Visual InformaticsUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations