SnoezelenCAVE: Virtual Reality CAVE Snoezelen Framework for Autism Spectrum Disorders

  • Gamini PerhakaranEmail author
  • Azmi Mohd Yusof
  • Mohd Ezanee Rusli
  • Mohd Zaliman Mohd Yusoff
  • Eze Manzura Mohd Mahidin
  • Imran Mahalil
  • Ahmad Redza Razieff Zainuddin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9429)


Autism Spectrum Disorder has become broadly recognized around the world, and Snoezelen (i.e. multi-sensory room) is one of the methods that provides therapy for Autism Spectrum Disorder. This paper presents a system proposal of a new technique called “SnoezelenCAVE” that relies on immersive virtual reality technology. In this “SnoezelenCAVE”, a Multi-sensory environment will be developed in a CAVE setup. It includes an integration of hand motion device and voice recognition system. This proposed designs will focus on virtual environments stimulating visual learning, auditory techniques and natural free hand interaction method in relaxing virtual environments.


Autism spectrum disorder Snoezelen Virtual reality CAVE 



We would like to thank Persatuan Kanak-Kanak Istimewa Kajang (PKIK) for their inputs on the development stage.


  1. 1.
    Lord, C., Cook, E.H., Leventhal, B.L., Amaral, D.G.: Autism spectrum disorders. Neuron 28, 355–363 (2000)CrossRefGoogle Scholar
  2. 2.
    Frith, U., Happé, F., Happe, F.: Autism spectrum disorder. Curr. Biol. 15(19), R786–R790 (2005)CrossRefGoogle Scholar
  3. 3.
    Manning-Courtney, P., Murray, D., Currans, K., Johnson, H., Bing, N., Kroeger-Geoppinger, K., Sorensen, R., Bass, J., Reinhold, J., Johnson, A., Messerschmidt, T.: Autism spectrum disorders. Curr. Probl. Pediatr. Adolesc. Health Care 43(1), 2–11 (2013)CrossRefGoogle Scholar
  4. 4.
    M.W. Report: Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR. Surveill. Summ. 63(2), 1–21 (2014)Google Scholar
  5. 5.
    Chang, Y.C., Laugeson, E.A., Gantman, A., Ellingsen, R., Frankel, F., Dillon, A.R.: Predicting treatment success in social skills training for adolescents with autism spectrum disorders: the UCLA program for the education and enrichment of relational skills. Autism 18(4), 467–470 (2014)CrossRefGoogle Scholar
  6. 6.
    Aman, M.G., De Smedt, G., Derivan, A., Lyons, B., Findling, R.L.: Double-blind, placebo-controlled study of risperidone for the treatment of disruptive behaviors in children with subaverage intelligence. Am. J. Psychiatry 159(8), 1337–1346 (2002)CrossRefGoogle Scholar
  7. 7.
    Murray, M.L., Hsia, Y., Glaser, K., Simonoff, E., Murphy, D.G.M., Asherson, P.J., Eklund, H., Wong, I.C.K.: Pharmacological treatments prescribed to people with autism spectrum disorder (ASD) in primary health care. Psychopharmacology 231(6), 1011–1021 (2014)CrossRefGoogle Scholar
  8. 8.
    Sirkkola, M.: Everyday Multisensory Environments, Wellness Technology and Snoezelen, vol. 0 (2014)Google Scholar
  9. 9.
    Anderson, K., Bird, M., Macpherson, S., McDonough, V., Davis, T.: Findings from a pilot investigation of the effectiveness of a Snoezelen room in residential care: should we be engaging with our residents more? Geriatr. Nurs. 32(3), 166–177 (2011)CrossRefGoogle Scholar
  10. 10.
    Poza, J., Gómez, C., Gutiérrez, M.T., Mendoza, N., Hornero, R.: Effects of a multi-sensory environment on brain-injured patients: Assessment of spectral patterns. Med. Eng. Phys. 35(3), 365–375 (2013)CrossRefGoogle Scholar
  11. 11.
    Hogg, J., Cavet, J., Lambe, L., Smeddle, M.: The use of ‘Snoezelen’ as multisensory stimulation with people with intellectual disabilities: a review of the research. Res. Dev. Disabil. 22(5), 353–372 (2001)CrossRefGoogle Scholar
  12. 12.
    Kaplan, H., Clopton, M., Kaplan, M., Messbauer, L., McPherson, K.: Snoezelen multi-sensory environments: task engagement and generalization. Res. Dev. Disabil. 27(4), 443–455 (2006)CrossRefGoogle Scholar
  13. 13.
    Barton, E.E., Reichow, B., Schnitz, A., Smith, I.C., Sherlock, D.: A systematic review of sensory-based treatments for children with disabilities. Res. Dev. Disabil. 37, 64–80 (2015)CrossRefGoogle Scholar
  14. 14.
    Lotan, M.: Management of Rett syndrome in the controlled multisensory (Snoezelen) environment. A review with three case stories. ScientificWorldJournal 6, 791–807 (2006)CrossRefGoogle Scholar
  15. 15.
    Kwok, H.W.M., To, Y.F., Sung, H.F.: The application of a multisensory Snoezelen room for people with learning disabilities - Hong Kong experience. Hong Kong Med. J. 9(2), 122–126 (2003)Google Scholar
  16. 16.
    Sánchez, P.A., Vázquez, F.S., Serrano, L. A.: Autism and the built environment, pp. 363–380 (2001)Google Scholar
  17. 17.
    Roosink, M., Robitaille, N., McFadyen, B.J., Hébert, L.J., Jackson, P.L., Bouyer, L.J., Mercier, C.: Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept. J. Neuroeng. Rehabil. 12(1), 1–10 (2015)CrossRefGoogle Scholar
  18. 18.
    Wang, M., Reid, D.: Virtual reality in pediatric neurorehabilitation: Attention deficit hyperactivity disorder, autism and cerebral palsy. Neuroepidemiology 36(1), 2–18 (2011)CrossRefGoogle Scholar
  19. 19.
    Kandalaft, M.R., Didehbani, N., Krawczyk, D.C., Allen, T.T., Chapman, S.B.: Virtual reality social cognition training for young adults with high-functioning autism. J. Autism Dev. Disord. 43(1), 34–44 (2013)CrossRefGoogle Scholar
  20. 20.
    Millen, L., Cobb, S.V.G., Patel, H., Glover, T.: Collaborative virtual environment for conducting design sessions with students with autism spectrum conditions. In: Proceedings of 9th International Conference on Disability Virtual Reality Associated Technologies, pp. 10–12 (2012)Google Scholar
  21. 21.
    Milne, M., Leibbrandt, R., Raghavendra, P., Luerssen, M., Lewis, T., Powers, D.: Lesson authoring system for creating interactive activities involving virtual humans the thinking head whiteboard. In: Proceedings of 2013 IEEE Symposium on Intelligent Agents, IA 2013 - 2013 IEEE Symposium Series on Computational Intelligence SSCI 2013, pp. 13–20 (2013)Google Scholar
  22. 22.
    Center for Disease Control and Prevention (CDC): Community report on Autism. Autism Developmental Disabilities Monitoring Network (2014)Google Scholar
  23. 23.
    Kim, Y.S., Leventhal, B.L., Koh, Y.J., Fombonne, E., Laska, E., Lim, E.C., Cheon, K.A., Kim, S.J., Kim, Y.K., Lee, H., Song, D.H., Grinker, R.R.: Prevalence of autism spectrum disorders in a total population sample. Am. J. Psychiatry 168(9), 904–912 (2011)CrossRefGoogle Scholar
  24. 24.
    Time, C., Methodolo, S.D., Lotter, A., Wing, N.R., Ishii, N.R., Bohman, N.R.: Summary of Autism Spectrum Disorder (ASD) Prevalence Studies (1986)Google Scholar
  25. 25.
    Elsabbagh, M., Divan, G., Koh, Y.J., Kim, Y.S., Kauchali, S., Marcín, C., Montiel-Nava, C., Patel, V., Paula, C.S., Wang, C., Yasamy, M.T., Fombonne, E.: Global prevalence of Autism and other pervasive developmental disorders. Autism Res. 5(3), 160–179 (2012)CrossRefGoogle Scholar
  26. 26.
    Harker, C.M, Stone, W.L.: Comparison of the diagnostic criteria for Autism spectrum disorder across DSM-5, 1 DSM-IV-TR, 2 and the individuals with disabilities act (IDEA) 3 definition of Autism Table 1: comparison of DSM-5 and DSM-IV-TR diagnostic criteria DSM-IV-TR pervasive, pp. 1–6, September 2014Google Scholar
  27. 27.
    A. Manuscript: NIH Public Access. Changes 29(6), 997–1003 (2012)Google Scholar
  28. 28.
    Pagliano, P.: The multi-sensory environment: an open-minded space. Br. J. Vis. Impair. 16(3), 105–109 (1998)CrossRefGoogle Scholar
  29. 29.
    Cleland, C.C., Clark, C.M.: Sensory deprivation and aberrant behavior among idiots (1996)Google Scholar
  30. 30.
    Chung, J.C., Lai, C.K., Chung, P.M., French, H.P.: Snoezelen for dementia. Cochrane Database Syst. Rev. 4, CD003152 (2002)Google Scholar
  31. 31.
    Shapiro, M., Parush, S., Green, M., Roth, D.: The efficacy of the ‘Snoezelen’ in the management of children with mental retardation who exhibit maladaptive behaviours. Br. J. Dev. Disabil. Part 2 43(85), 140–155 (1997)CrossRefGoogle Scholar
  32. 32.
    McKee, S.A., Harris, G.T., Rice, M.E., Silk, L.: Effects of a Snoezelen room on the behavior of three autistic clients. Res. Dev. Disabil. 28(3), 304–316 (2007)CrossRefGoogle Scholar
  33. 33.
    Singh, N.N., Lancioni, G.E., Winton, A.S.W., Molina, E.J., Sage, M., Brown, S., Groeneweg, J.: Effects of Snoezelen room, activities of daily living skills training, and vocational skills training on aggression and self-injury by adults with mental retardation and mental illness. Res. Dev. Disabil. 25(3), 285–293 (2004)CrossRefGoogle Scholar
  34. 34.
    Borland, I.: The effectiveness of Snoezelen sensory-based behavioural therapy on individuals with Dementia. Ment. Heal. CATs. Pap. 16 (2010)Google Scholar
  35. 35.
    Vince, J.A.: Virtual Reality Systems. Addison-Wesley Publishing Company, New York (1995)Google Scholar
  36. 36.
    Parsons, S., Cobb, S.: State-of-the art of virtual reality technologies for children on the autism spectrum. Eur. J. Spec. Needs Educ. 26 August 2011Google Scholar
  37. 37.
    Cromby, J.J., Standen, P.J., Brown, D.J.: The potentials of virtual environments in the education and training of people with learning disabilities. J. Intellect. Disabil. Res., 40(Pt 6), 489–501 (1996)Google Scholar
  38. 38.
    Chu, C.C.P., Dani, T.H., Gadh, R.: Multi-sensory user interface for a virtual-reality-based computeraided design system. Comput. Des. 29(10), 709–725 (1997)Google Scholar
  39. 39.
    Swingler, T.: The invisible keyboard in the air: an overview of the educational, therapeutic and creative applications of the EMS SoundbeamTM. In: 2nd European Conference Disability, Virtual Reality & Associated Technology, pp. 253–259 (1998)Google Scholar
  40. 40.
    Ming, X., Brimacombe, M., Wagner, G.C.: Prevalence of motor impairment in autism spectrum disorders. Brain Dev. 29(9), 565–570 (2007)CrossRefGoogle Scholar
  41. 41.
    Goyen, T.A., Lui, K., Woods, R.: Visual-motor, visual-perceptual, and fine motor outcomes in very-low-birthweight children at 5 years. Dev. Med. Child Neurol. 40(2), 76–81 (1998)CrossRefGoogle Scholar
  42. 42.
    Lee, W.J., Huang, C.W., Wu, C.J., Huang, S.T., Chen, G.D.: The effects of using embodied interactions to improve learning performance. In: Proceedings of 12th IEEE International Conference on Advanced Learning Technologies ICALT 2012, pp. 557–559 (2012)Google Scholar
  43. 43.
    McNevin, N.H., Shea, C.H., Wulf, G.: Increasing the distance of an external focus of attention enhances learning. Psychol. Res. 67(1), 22–29 (2003)Google Scholar
  44. 44.
    Garzotto, F., Gelsomini, M., Oliveto, L., Valoriani, M.: Motion-based touchless interaction for ASD children. In: Proceedings of 2014 International Working Conference on Advanced Visual Interfaces - AVI 2014, pp. 117–120 (2014)Google Scholar
  45. 45.
    Lahiri, U., Bekele, E., Dohrmann, E., Warren, Z., Sarkar, N.: Design of a virtual reality based adaptive response technology for children with Autism. IEEE Trans. Neural Syst. Rehabil. Eng. 21(1), 55–64 (2013)CrossRefGoogle Scholar
  46. 46.
    Kadar, M., Mcdonald, R., Lentin, P.: Malaysian occupational therapists’ practices with children and adolescents with autism spectrum disorder (2015)Google Scholar
  47. 47.
    Bai, Z., Blackwell, A.F., Coulouris, G.: Through the looking glass: pretend play for children with autism. In: 2013 IEEE International Symposium on Mixed Augmented Reality, pp. 49–58 (2013)Google Scholar
  48. 48.
    Slov, P.: Designing social and emotional skills training: the challenges and opportunities for technology support, pp. 2797–2800 (2015)Google Scholar
  49. 49.
    Lahiri, U., Bekele, E., Dohrmann, E., Warren, Z., Sarkar, N.: A physiologically informed virtual reality based social communication system for individuals with autism. J. Autism Dev. Disord. 45(4), 919–931 (2015)CrossRefGoogle Scholar
  50. 50.
    Duarte, C., Carriço, L., Costa, D., Costa, D., Falcão, A., Tavares, L.: Welcoming gesture recognition into autism therapy. In: Proceedings of Extended Abstracts 32nd Annual ACM Conference on Human Factors Computing System - CHI EA 2014, pp. 1267–1272 (2014)Google Scholar
  51. 51.
    Burdea, G.C.: Haptic feedback for virtual reality. Virtual Real. Prototyp. Work. 2(June), 17–29 (1999)Google Scholar
  52. 52.
    Burdea, G.C., Coiffet, P.: Virtual Reality Technology, vol. 1. Wiley, Hoboken (2003)Google Scholar
  53. 53.
    Arthur, K.W., Booth, K.S., Ware, C.: Evaluating 3D task performance for fish tank virtual worlds. ACM Trans. Inf. Syst. 11(3), 239–265 (1993)CrossRefGoogle Scholar
  54. 54.
    Melzer, J.: Head-mounted displays: designing for the user (1997)Google Scholar
  55. 55.
    Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based virtual reality. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1993, pp. 135–142 (1993)Google Scholar
  56. 56.
    Fassbender, E.: A low-cost 3 projector display system for pain reduction and improved patient recovery times, pp. 130–133 (2011)Google Scholar
  57. 57.
    Implementing a Low-Cost CAVE system using the CryEngine2. Accessed 5 May 2015
  58. 58.
    Preddy, S.M., Nance, R.E.: Key requirements for CAVE simulations. Proc. Winter Simul. Conf. 1, 127–135 (2002)CrossRefGoogle Scholar
  59. 59.
    Pagliano, P.: Using a Multisensory Environment: A Practical Guide for Teachers. Routledge, London (2013)Google Scholar
  60. 60.
    Habiche, L.B.: Patent Application Publication, PCT/EP11/68794 (2013)Google Scholar
  61. 61.
    Potter, L.E., Araullo, J., Carter, L.: The leap motion controller. In: Proceedings of the 25th Australian Computer-Human Interaction Conference on Augmentation, Application, Innovation, Collaboration - OzCHI 2013, pp. 175–178 (2013)Google Scholar
  62. 62.
    Khademi, M., Mousavi Hondori, H., McKenzie, A., Dodakian, L., Lopes, C.V., Cramer, S.C.: Free-hand interaction with leap motion controller for stroke rehabilitation. In: Proceedings of the Extended Abstracts of the 32nd Annual ACM Conference on Human Factors in Computing Systems - CHI EA 2014, pp. 1663–1668 (2014)Google Scholar
  63. 63.
    Wang, J., Barstein, J., Ethridge, L.E., Mosconi, M.W., Takarae, Y., Sweeney, J.A.: Resting state EEG abnormalities in autism spectrum disorders. J. Neurodev. Disord. 5(1), 1–14 (2013)CrossRefGoogle Scholar
  64. 64.
    Peters, J.M., Taquet, M., Vega, C., Jeste, S.S., Fernández, I.S., Tan, J., Nelson, C.A., Sahin, M., Warfield, S.K.: Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Med. 11(1), 54 (2013)CrossRefGoogle Scholar
  65. 65.
    Coben, R., Sherlin, L., Hudspeth, W., McKeon, K., Ricca, R.: Connectivity-guided EEG biofeedback for autism spectrum disorder: evidence of neurophysiological changes. NeuroRegulation 1(2), 109–130 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gamini Perhakaran
    • 1
    Email author
  • Azmi Mohd Yusof
    • 1
  • Mohd Ezanee Rusli
    • 1
  • Mohd Zaliman Mohd Yusoff
    • 1
  • Eze Manzura Mohd Mahidin
    • 1
  • Imran Mahalil
    • 1
  • Ahmad Redza Razieff Zainuddin
    • 1
  1. 1.Centre of Innovative Advanced Virtual RealityUniversiti Tenaga Nasional, Jalan IKRAM-UNITENKajangMalaysia

Personalised recommendations