Advertisement

Implementing Low Level Features for Human Aggressive Movement Detection

  • Tuan Khalisah Tan Zizi
  • Suzaimah RamliEmail author
  • Norazlin Ibrahim
  • Norulzahrah Mohd Zainudin
  • Lili Nurliyana Abdullah
  • Nor Asiakin Hasbullah
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9429)

Abstract

In this real world, being able to identify the signs of imminent abnormal behaviors such as aggression or violence and also fights, is of extreme importance in keeping safe those in harm’s way. This research propose an approach to figure out human aggressive movements using Horn-Schunck optical flow algorithm in order to find the flow vector for all video frames. The video frames are collected using digital camera. This research guides and discovers the patterns of body distracted movement so that suspect of aggression can be investigated without body contact. Using the vector of this method, the abnormal and normal video frames are then classified and utilized to define the aggressiveness of humans. Preliminary experiment result showed that the low level of feature extraction can classify human aggressive and non-aggressive movements.

Keywords

Optical flow Horn-Schunck algorithm Aggressive movement Non-aggressive movement 

Notes

Acknowledgments

The first author would like to express an appreciation and acknowledge the financial contributions from Ministry of Higher Education for their awarded grant RACE (RACE/F3/SG5/UPNM/3), January 2015--January 2017

References

  1. 1.
    Ibrahim, N., Mokri, S., Siong, L., Mustafa, M., Hussain, A.: Snatch Theft Detection using Low Level Features. II, (2010)Google Scholar
  2. 2.
    Samsudin, W.N.W., Ghazali, K.H., Jusof, M.F.M.: Analysis of Motion Detection Using Social Force Model. 25–26 (2013)Google Scholar
  3. 3.
    Anderson, C., Bushman, B.: Human Aggression. 27–51 (2002) Google Scholar
  4. 4.
    Lynn, J., Baron-cohen, S.: Psychology Relational Aggression. (2014)Google Scholar
  5. 5.
    Torrey, E.F., Stanley, J., Monahan, J., Steadman, H.J.: The MacArthur violence risk assessment study revisited: two views ten years after its initial publication. Psychiatr. Serv. 59, 147–152 (2008)CrossRefGoogle Scholar
  6. 6.
    Deniz, O., Serrano, I., Bueno, G., Kim, T.K.: Fast Violence Detection in Video. Iis.Ee.Ic.Ac.Uk. http://www.iis.ee.ic.ac.uk/icvl/doc/VISAPP2014.pdf\npapers3://publication/uuid/9B50E7A4-F629-4569-89B7-75A1ECBF4F55 (2007)
  7. 7.
    Bay-Hinitz, A., Peterson, R.F., Quilitch, H.R.: Cooperative games: a way to modify aggressive and cooperative behaviors in young children. J. Appl. Behav. Anal. 27, 435–446 (1994)CrossRefGoogle Scholar
  8. 8.
    Paul, M., Haque, S.M.E., Chakraborty, S.: Human detection in surveillance videos and its applications - a review. EURASIP J. Adv. Signal Process. 2013, 176 (2013)CrossRefGoogle Scholar
  9. 9.
    Vidhya, A., Karthika, M.: Fire Detection in Video Sequences using Optical Flow Estimation. 4, 147–151 (2014)Google Scholar
  10. 10.
    Wei, G., Hou, Z., Li, W., Yu, W.: Color image optical flow estimation algorithm with shadow suppression. In: 2013 Seventh International Conference on Image Graph, pp. 423–427 (2013). doi: 10.1109/ICIG.2013.91
  11. 11.
    Ramli, S., Talib, M., Khalisah, T., Zainudin, N.: Implementing Optical Flow Algorithm for Human Aggressive Movement Detection. 264–268Google Scholar
  12. 12.
    Horn, B.K.P., Schunck, B.G.: ‘Determining optical flow’: a retrospective. Artif. Intell. 59, 81–87 (1993)CrossRefGoogle Scholar
  13. 13.
    Kesrarat, D., Patanavijit, V.: Tutorial of Motion Estimation Based on Horn-Schunk Optical Flow Algorithm in MATLAB ® Horn-Schunk Algorithm (HS). 15, 8–16 (2011)Google Scholar
  14. 14.
    Barron, J., Fleet, D., Beauchemin, S.: Systems & Experiment Performance of Optical Flow Techniques.pdfGoogle Scholar
  15. 15.
    Raju, D., Joseph, P.: Motion Detection and Optical Flow. 5, 5716–5719 (2014)Google Scholar
  16. 16.
    Ibrahim, N., Riyadi, S., Zakaria, N., Mustafa, M.: Implementation of differential optical flow algorithms in natural rigid video motion. In: Proceedings, vol. I, 18–21 (2009)Google Scholar
  17. 17.
    Shafie, A., Hafiz, F., Ali, M.: Motion detection techniques using optical flow. World Acad. Sci. Eng. Technol. 3, 522–524 (2009)Google Scholar
  18. 18.
    Kumar, S.: A Variational Approach for Optical Flow Estimation in Infra-Red or Thermal Images. 56–61 (2013). doi: 10.1109/ICIIP.2013.6707555

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tuan Khalisah Tan Zizi
    • 1
  • Suzaimah Ramli
    • 1
    Email author
  • Norazlin Ibrahim
    • 2
  • Norulzahrah Mohd Zainudin
    • 1
  • Lili Nurliyana Abdullah
    • 3
  • Nor Asiakin Hasbullah
    • 1
  1. 1.Universiti Pertahanan Nasional MalaysiaKuala LumpurMalaysia
  2. 2.Universiti Kuala Lumpur Malaysia France InstituteBandar Baru BangiMalaysia
  3. 3.Universiti Putra MalaysiaSerdangMalaysia

Personalised recommendations