Skip to main content

Ignition and Flame Propagation in Heated Vessels

  • Chapter
  • First Online:
  • 1077 Accesses

Part of the book series: Heat and Mass Transfer ((HMT))

Abstract

Features of spatial development of thermal ignition (self-ignition) in chain oxidation of hydrogen and certain hydrocarbons have been revealed by means of high-speed cinematography. It is shown that the features of thermal ignition depend on the state of reactor surface, namely the primary ignition center originates on the surface, then the flame front of the center propagates into volume corresponding to the reactor walls temperature and gas mixture composition. It is shown that introduction of platinum wire into the reactor eliminates the phenomenon of a negative temperature coefficient in hydrocarbons combustion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Semenov, N.N.: On Some Problems of Chemical Kinetics and Reaction Ability, p. 685. Academy of Sciences of the USSR, Moscow (1958) (in Russian)

    Google Scholar 

  2. Zel’dovich, Ya.B., Barenblatt, G.A., Librovich, V.B., Machviladze, D.V.: Mathematical Theory of Flame Propagation. Nauka, Moscow, p. 620 (1980) (in Russian)

    Google Scholar 

  3. Frank-Kamenetsky, D.A.: Diffusion and Heat Transfer in Chemical Kinetics. Nauka, Moscow, p. 492 (1967) (in Russian)

    Google Scholar 

  4. Merzhanov, A.G., Haykin, B.I.: Theory of Combustion Waves in Homogeneous Media, p. 160. ISMAN RAS, Chernogolovka (1992) (in Russian)

    Google Scholar 

  5. Rubtsov, N.M., Tsvetkov, G.I., Chernysh, V.I.: Different effects of active minor admixtures on hydrogen and methane ignitions. Rus. J. Kinet. Catal. 49, 344 (2008)

    Article  Google Scholar 

  6. Neiman, M.B., Egorov, L.N.: Self-ignition of methane-oxygen mixtures. Russ. J. Phys. Chem. 3, 61 (1932) (in Russian)

    Google Scholar 

  7. Lewis, B., Von Elbe, G.: Combustion, Explosion and Flame in Gases. Academic Press, New York (1987). 739

    Google Scholar 

  8. Aghalayam, P., Bui, P.-A., Vlachos, D.G.: The role of radical wall quenching in flame stability and wall flux. Combust. Theory Model. 2, 515 (1998)

    Article  MATH  Google Scholar 

  9. Azatyan, V.V., Bolodyan, I.A., Navtsenya, V.Y., Shebeko, Y.N.: Dominating role of branching and termination of reaction chains in occurrence of concentration limits of flame propagation. Russ. J. Chem. Phys. A 76, 817 (2002)

    Google Scholar 

  10. Azatyan, V.V., Alexandrov, E.N., Troshin, A.F.: On the rate of chain origination in the reactions of H2 and D2 with oxygen. Kinet. Catal. (Engl. Transl.) 16, 346 (1975)

    Google Scholar 

  11. Atkinson, R., Baulch, D.L., Cox, R.A., Hampson Jr., R.F., Kerr, J.A., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data 26, 1329 (1997)

    Article  Google Scholar 

  12. Baulch, D.L., Cobos, C.J., Cox, R.A., Esser, C., Frank, P., Just, T., Kerr, J.A., Pilling, M.J., Troe, J., Walker, R.W., Warnatz, J.: Evaluated kinetic data for combustion modeling. J. Phys. Chem. Ref. Data 21, 411 (1992)

    Article  Google Scholar 

  13. Ryu, S.-O., Hwang, S.M., Rabinowitz, M.J.: Rate coefficient of the OCH via shock-tube laser absorption spectroscopy. Chem. Phys. Lett. 242, 279 (1995)

    Article  Google Scholar 

  14. Baulch, D.L., Bowman, C.T., Cobos, C.J., Cox, R.A., Just, T., Kerr, J.A., Pilling, M.J., Stocker, D., Troe, J., Tsang, W., Walker, R.W., Warnatz, J.: Evaluated kinetic data for combustion modelling: supplement II. J. Phys. Chem. Ref. Data 34, 566 (2005)

    Article  Google Scholar 

  15. Yang, H., Gardiner, W.C., Shin, K.S., Fujii, N.: Shock tube study of the rate coefficient of H + O2 – OH + O. Chem. Phys. Lett. 231, 449 (1994)

    Article  Google Scholar 

  16. Park, Y.K., Vlachos, D.G.: Chemistry reduction and thermokinetic criteria for ignition of hydrogen-air mixtures at high pressures. J. Chem. Soc. Faraday Trans. 94, 735 (1998)

    Article  Google Scholar 

  17. Kikoin, I.K. (ed.): Tables of Physical Values, Handbook. Atomizdat, Moscow, p. 1007 (1976) (in Russian)

    Google Scholar 

  18. Hitch, B.D., Senser, D.W.: Reduced H2-O2 mechanisms for use in reacting flow simulation. In: 26th AIAA-1988-732, Aerospace Sciences Meeting, Reno, p. 11, 11–14 Jan 1988

    Google Scholar 

  19. Konnov, A.A.: Refinement of the kinetic mechanism of hydrogen combustion. Russ. J. Chem. Phys. B 23, 10 (2004)

    Google Scholar 

  20. Rubtsov N.M., Seplyarskii B.S., Chernysh V.I., Tsvetkov G.I.: Numerical investigation of the effects of surface recombination and initiation for laminar hydrogen flames at atmospheric pressure. Mendeleev Commun. 18, 220 (2008)

    Google Scholar 

  21. Rubtsov, N.M., Seplyarsky, B.S., Tsvetkov, G.I., Chernysh, V.I.: Influence of inert additives on the time of formation of steady spherical fronts of laminar flames of mixtures of natural gas and isobutylene with oxygen under spark initiation. Mendeleev Commun. 19, 15 (2009)

    Google Scholar 

  22. Borisov, A.A., Zamanskii, V.M., Lisyanskii, V.V., Skachkov, G.I., Troshin, K.Y..: On the promotion in branched-chain reactions, II. Acceleration of chain branching. Russ. J. Chem. Phys. B 8, 1652 (1989)

    Google Scholar 

  23. Abramov, V.G., Merzhanov, A.G.: Thermal explosion in homogeneous flow-through reactors. Phys. Coimbust. Explos. 4(4), 548 (1968)

    Google Scholar 

  24. Karpov, V.P., Rubtsov, N.M., Ryzhkov, O.T., Temchin, S.M., Chernysh, V.I.: A study of flame propagation in dichlorosilane-oxygen mixtures by means of high speed cinematography. Arch. Combust. 15, 25 (1995)

    Google Scholar 

  25. Rubtsov, Nikolai M., Seplyarskii, Boris S., Chernysh, I., Tsvetkov, I.: Investigation into self-ignition in chain oxidation of hydrogen, natural gas and isobutene by means of high-speed colour cinematography. Mendeleev Commun. 19, 346 (2009)

    Article  Google Scholar 

  26. Poltorak, V.A., Voevodsky, V.V.: Experimental investigation of the reaction of hydrogen oxidation and the third ignition limit. Russ. J. Phys. Chem. 24, 299 (1950) (in Russian)

    Google Scholar 

  27. Todes, O.M.: On combustion theory. Rus. J. Fiz. Khim. A. 13, 868 (1939) (in Russian)

    Google Scholar 

  28. Sokolik, A.S.: Self-Ignition, Flame, and Detonation in Gases. Akademii Nauk USSR, Moscow (1960) (in Russian)

    MATH  Google Scholar 

  29. Warnatz, J., Maas, U., Dibble, C.: Physical and Chemical Aspects, Modeling, Experiments, Formation of Pollutants. Springer, Berlin (2001)

    MATH  Google Scholar 

  30. Azatyan, V.V., Pyatnitskii, Y.I., Boldyreva, N.A.: Detection of chemoluminescence during oxidation of hydrogen-containing compounds on the surface of platinum metals. Rus. J. Fiz. Khim. A 7, 235 (1988)

    Google Scholar 

  31. Azatyan, V.V.: Heterophase development of chains in processes of combustion and pyrolysis. Rus. J. Fiz. Khim. A 72, 199 (1998)

    Google Scholar 

  32. Saytzev, S.G., Soloukhin, R.I.: In: Proceedings of the 8th Symposium (International) on Combustion. California Institute of Technology Pasadenia, California (The Combustion Institute, Pittsburgh), p. 2771 (1962)

    Google Scholar 

  33. Livengood, J.C., Leary, W.A.: Autoignition by rapid compression. Ind. Eng. Chem. 43, 2797 (1951)

    Article  Google Scholar 

  34. Rubtsov, N.M., Seplyarskii, B.S., Troshin, K.Y., Tsvetkov, G.I., Chernysh, V.I.: High-speed colour cinematography of the spontaneous ignition of propane–air and n-pentane–air mixtures. Mendeleev Commun. 21, 31 (2011)

    Article  Google Scholar 

  35. Rubtsov, N.M., Seplyarskii, B.S., Troshin, K.Y., Tsvetkov, G.I., Chernysh, V.I.: Investigation into spontaneous ignition of hydrogen–air mixtures in a heated reactor at atmospheric pressure by high-speed cinematography. Mendeleev Commun. 22, 222–224 (2012)

    Article  Google Scholar 

  36. Borisov, A.A., Knorre, V.G., Kudryashova, E.L., Skachkov, G.I., Troshin, K.Y.: On temperature measurement in an induction period of the ignition of homogeneous gas mixtures in rapid mixture injection static setup. Russ. J. Phys. Chem. B 17, 80 (1998)

    Google Scholar 

  37. Azatyan, V.V.: Chain nature of the third ignition limit of hydrogen-oxygen mixtures at atmospheric pressure. Russ. J. Phys. Chem. (Engl. Transl.) 8, 29 (2006)

    Google Scholar 

  38. Rubtsov, N.M.: On the chain nature of the third ignition limit of 2H2 + O2 mixture. Kinet. Catal. (Engl. Transl.) 51, 206 (2010)

    Google Scholar 

  39. Macek, A.: Effect of additives on formation of spherical detonation waves in hydrogen-oxygen-mixtures. AIAA J. 1(8), 1915–1918 (1963)

    Article  Google Scholar 

  40. McBain, J.W., Glassbrook, C.I.: Electrification and luminescence phenomena accompanying desorption of gases from metals. J. Am. Chem. Soc. 1943, 65 (1908)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickolai M. Rubtsov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rubtsov, N.M. (2016). Ignition and Flame Propagation in Heated Vessels. In: The Modes of Gaseous Combustion. Heat and Mass Transfer. Springer, Cham. https://doi.org/10.1007/978-3-319-25933-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25933-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25932-1

  • Online ISBN: 978-3-319-25933-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics