Skip to main content

Mind the Network: Rock Art, Cultural Transmission, and Mutual Information

  • Chapter
  • First Online:
Cultural Phylogenetics

Part of the book series: Interdisciplinary Evolution Research ((IDER,volume 4))

Abstract

Decorative patterns have long been considered suitable for determining descent, since they are categorized as homologous and adaptively neutral. Rock art, for its part, has often been left aside due to a lack of chronological control. In this paper, we propose a way to treat rock art in order to track Cultural Transmission Paths by means of motif distribution using Northwestern Patagonia as a case study. We present a theoretical and methodological framework for modeling Cultural Transmission Archaeological Paths by constructing a Mutual Information Network between motifs, identifying clusters and defining their associated Site Networks. The results allow us to suggest a hypothetical nuclear region, well known and transited by hunter-gatherers, with few connections to the more distant parts of the study area. This pattern may be related to Patagonia’s population models and fit the suggestion from other fields of inquiry that a sparsely connected and not unnecessarily complex network will be robust enough to sustain information flux.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Parts of this database have been previously used in Scheinsohn et al. (2009, 2015).

References

  • Albornoz, A. M. (1996). Sitios con arte rupestre en los alrededores del lago Nahuel Huapi (Río Negro). In J. Gómez Otero (Ed.), Arqueología. Sólo Patagonia (pp. 123–130). Puerto Madryn: Centro Nacional Patagónico.

    Google Scholar 

  • Albornoz, A. M., & Cúneo, E. M. (2000). Análisis comparativo de sitios con pictografías en ambientes lacustres boscosos de Patagonia Septentrional: lagos Lácar y Nahuel Huapi (provincias de Neuquén y Río Negro). In M. M. Podestá & M. de Hoyos (Eds.), Arte en las Rocas. Arte rupestre, menhires y piedras de colores en Argentina (pp. 163–174). Buenos Aires: Sociedad Argentina de Antropología- Asociación Amigos del INAPL.

    Google Scholar 

  • Arrigoni, G. (1997). Pintando entre lagos y bosques (las pinturas rupestres del Parque Nacional Los Alerces, Chubut). Revista del Museo de Historia Natural de San Rafael, 16(1–4), 241–259.

    Google Scholar 

  • Arrigoni, G., & Fernández, P. (2004). Los restos óseos de alero del Sendero de Interpretación (PN Los Alerces, prov. del Chubut): integridad, resolución y aprovechamiento de los recursos faunísticos del bosque. In M. T. Civalero, P. M. Fernández, & A. G. Guráieb (Eds.), Contra viento y marea. Arqueología de Patagonia (pp. 403–416). Buenos Aires: Instituto Nacional de Antropología y Pensamiento Latinoamericano – Sociedad Argentina de Antropología.

    Google Scholar 

  • Aschero, C. (1996). ¿Adónde van esos guanacos? In J. Gómez Otero (Ed.), Arqueología. Solo Patagonia. (pp. 153–152). Puerto Madryn: Centro Nacional Patagónico.

    Google Scholar 

  • Aschero, C., Pérez de Micou, C., Onetto, M., Bellelli, C., Nacuzzi, L., & Fischer, A. (1983). Arqueología del Chubut. El valle de Piedra Parada. Rawson: Gobierno de la Provincia de Chubut.

    Google Scholar 

  • Barrientos, G., & Perez, I. (2004). La expansión y dispersión de poblaciones del norte de Patagonia durante el Holoceno tardío: evidencia arqueológica y modelo explicativo. In T. Civalero, P. Fernández, & G. Guraieb (Eds.), Contra Viento y Marea. Arqueología de Patagonia (pp. 179–195). Buenos Aires: Instituto Nacional de Antropología y Pensamiento Latinoamericano & Sociedad Argentina de Antropología.

    Google Scholar 

  • Barton, C., & Clark, G. A. (1997). Evolutionary theory in archaeological explanation. In C. Barton & G. A. Clark (Eds.), Rediscovering Darwin: Evolutionary theory in archaeological explanation, archaeological papers of the American Anthropological Association (pp. 3–18). Washington, DC: American Anthropological Association.

    Google Scholar 

  • Barton, C. M., Clark, G. A., & Cohen, A. (1994). Art as information. Explaining Upper Palaeolithic art in Western Europe. World Archaeology, 26(2), 185–204.

    Google Scholar 

  • Belardi, J. B. (2004). Más vueltas que una greca. In M. T. Civalero, P. M. Fernández, & A. G. Guráieb (Eds.), Contra viento y marea. Arqueología de Patagonia (pp. 591–603). Buenos Aires: Instituto Nacional de Antropología y Pensamiento Latinoamericano – Sociedad Argentina de Antropología.

    Google Scholar 

  • Bellelli, C., Carballido Calatayud, M., Fernández, P. M., & Scheinsohn, V. (2003). El pasado entre las hojas. Nueva información arqueológica del noroeste de la provincia de Chubut, Argentina. Werken, 4, 25–42.

    Google Scholar 

  • Binford, L. R. (1981). Behavioral archaeology and the Pompei Premise. Journal of Anthropological Research, 37, 195–208.

    Google Scholar 

  • Borgerhoff Mulder, M., Nunn, C., & Towner, M. (2006). Cultural macroevolution and the transmission of traits. Evolutionary Anthropology, 15, 52–64.

    Google Scholar 

  • Borrero, L. (1994–1995). Arqueología de la Patagonia. Palimpsesto, 4, 9–69.

    Google Scholar 

  • Borrero, L., & Franco, N. (1997). Early Patagonian hunter-gatherers: Subsistence and technology. Journal of Anthropological Research, 53, 219–239.

    Google Scholar 

  • Boschín, M. T. (2000). Sociedades cazadoras del área Pilcaniyeu, sudoeste de Río Negro: elementos para un análisis territorial. Mundo Ameghiniano, 14, 1–75.

    Google Scholar 

  • Boschín, M. T. (2009). Tierra de hechiceros. Arte indígena de la Patagonia septentrional argentina. Salamanca, España: Ediciones Universidad de Salamanca. Servicio de publicaciones de la Universidad de Córdoba.

    Google Scholar 

  • Boyd, R., & Richerson, P. (1985). Culture and the evolutionary process. Chicago: University of Chicago Press.

    Google Scholar 

  • Carden, N. (2009). Imágenes a través del tiempo. Arte rupestre y construcción social del paisaje en la Meseta Central de Santa Cruz. Buenos Aires: Sociedad Argentina de Antropología.

    Google Scholar 

  • Casamiquela, R. (1965). Rectificaciones y ratificaciones hacia una interpretación definitiva del panorama etnológico de la Patagonia y área septentrional adyacente. B. Blanca: Cuadernos del Sur, Instituto de Humanidades de la Universidad Nacional del Sur.

    Google Scholar 

  • Castro, A. (2010). Rutas Indígenas y Arqueología en la Provincia del Chubut. Ph.D. manuscript, Buenos Aires: University of Buenos Aires.

    Google Scholar 

  • Cavalli-Sforza, L. L., & Feldman, M. (1981). Cultural transmission and evolution. Princeton: Princeton University Press.

    Google Scholar 

  • Chabris, C., & Simons, D. (2010). The invisible gorilla and other ways our intuitions deceive us. New York: Crown.

    Google Scholar 

  • Claraz, G. (2008). Viaje al río Chubut. Buenos Aires: Ediciones Continente.

    Google Scholar 

  • Cochrane, E. E., & Lipo, C. P. (2010). Phylogenetic analyses of Lapita decoration do not support branching evolution or regional population structure during colonization of Remote Oceania. Philosophical Transaction of the Royal Society of London B Biology Science, 365(1559), 3889–3902.

    Google Scholar 

  • Conkey, M. (1978). Style and information in cultural evolution: Toward a predictive model for the Paleolithic. In C. Redman, et al. (Eds.), Social archeology: Beyond subsistence and dating. (pp. 61–85). New York: Academic Press.

    Google Scholar 

  • Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley, Wiley Series in Telecommunications.

    Google Scholar 

  • Crutchfield, J. P., Ellison, C. J., & Mahoney, J. R. (2009). Time’s barbed arrow: Irreversibility, crypticity, and stored information. Physical Review Letters, 103, 094101.

    Google Scholar 

  • Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. Inter Journal Complex Systems, 1695 (http://igraph.sf.net).

  • Millán de Palavecino, D. (1963). Área de expansión del tejido araucano. In Primer Congreso del Área Araucana Argentina (pp. 411–448) San Martín de los Andes: Junta de Estudios Araucanos.

    Google Scholar 

  • Dowson, T. A. (1998). Revelations of religious reality: the individual in San rock art. World Archaeology, 20, 16–28.

    Google Scholar 

  • Dunnell, R. C. (1978). Style and function: a fundamental dichotomy. American Antiquity, 43(1), 192–202.

    Google Scholar 

  • Eerkens, J. (2000). Practice makes within 5% of perfect: The role of visual perception, motor skills, and human memory in artifact variation and standardization. Current Anthropology, 41(4), 663–668.

    Google Scholar 

  • Escalada, F. (1949). El complejo Tehuelche. Buenos Aires: Coni.

    Google Scholar 

  • Fiore, D. (2006). Poblamiento de imágenes: Arte rupestre y colonización de la Patagonia. Variabilidad y ritmos de cambio en tiempo y espacio. In D. Fiore & M. M. Podestá (Eds.), Tramas en la piedra. Producción y usos del arte rupestre (pp. 43–62). Buenos Aires: World Archaeological Congress, Asociación Amigos de Instituto Nacional de Antropología, Sociedad Argentina de Antropología.

    Google Scholar 

  • Gamble, C. (1991). The social context for Palaeolithic art. Proceedings of the Prehistoric Society, 57(1), 3–15.

    Google Scholar 

  • Gradin, C. (1999). Sobre las tendencias del arte rupestre de Patagonia argentina. In M. Tamagnini (Ed.), Segundas Jornadas de Investigadores en Arqueología y Etnohistoria del Centro-Oeste del País (pp. 85–99). Córdoba: Universidad Nacional de Río Cuarto.

    Google Scholar 

  • Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360–1380.

    Google Scholar 

  • Hajduk, A., Albornóz, A., & Lezcano M. (2004). El “mylodon” en el patio de atrás. Informe preliminar sobre los trabajos en el sitio El Trébol, ejido urbano de San Carlos de Bariloche. Provincia de Río Negro. In M. T. Civalero, P. M. Fernández, & A. G. Guráieb (Eds.), Contra viento y marea. Arqueología de Patagonia (pp. 715–732). Buenos Aires: Instituto Nacional de Antropología y Pensamiento Latinoamericano – Sociedad Argentina de Antropología.

    Google Scholar 

  • Hajduk, A., Albornóz, A., & Lezcano M. (2009). Nuevas excavaciones en el sitio El Trébol (San Carlos de Bariloche, prov. de Río Negro). Más sobre los niveles con fauna extinta. In A. Austral & M. Tamagnini (Eds.), Problemáticas en la arqueología contemporánea (Vol. 3, pp. 955–966). Río Cuarto, Argentina: Universidad Nacional de Río Cuarto. Facultad de Ciencias Humanas. Facultad de Ciencias Exactas, Físico-Químicas y Naturales.

    Google Scholar 

  • Henrich, J., Boyd, R., & Richerson, P. (2008). Five misunderstandings about cultural evolution. Human Nature, 19, 119–137.

    Google Scholar 

  • Jordan P., & Shennan S. (2003). Cultural transmission, language, and basketry traditions amongst the California Indians. Journal of Anthropological Archaeology, 22, 42–74.

    Google Scholar 

  • Kauffman, S. (1993). The origins of order: Self-organization and selection in evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Leclerc, R. (2008). Survival of the sparsest: Robust gene networks are parsimonious. Molecular Systems Biology, 4, 213.

    Google Scholar 

  • Lewis-Williams, J., & Dowson, T. (1988). The sign of all Times: Entoptic Phenomena in Upper palaeolithic Art. Current Anthropology, 29(2), 201–245.

    Google Scholar 

  • Loecher, M. (2012). RgoogleMaps: Overlays on Google map tiles in R. R package version 1.2.0.2. http://CRAN.R-project.org/package=RgoogleMaps. Berlin School of Economics and Law.

  • Mackay, D. (2003). Information theory, inference and learning algorithms. Cambridge: Cambridge University Press.

    Google Scholar 

  • McDonald, J., & Veth, P. (2011). Information exchange amongst hunter-gatherers of the Western Desert of Australia. In R. Whallon, W. Lovis, & K. Hitchcock (Eds.), Information and its role in hunter-gatherer bands (pp. 221–223). Los Angeles: Cotsen Institute of Archaeology Press.

    Google Scholar 

  • Menghin, O. (1957). Estilos del arte rupestre de Patagonia. Acta Praehistorica, I, 57–87.

    Google Scholar 

  • Mesoudi, A. (2008). The experimental study of cultural transmission and its potential for explaining archaeological data. In M. J. O’Brien (Ed.), Cultural transmission and archaeology: Issues and case studies (pp. 91–101). Washington, DC: Society of American Archaeology Press.

    Google Scholar 

  • Mitchell, M. (2009). Complexity: A guided tour. Oxford: Oxford University Press.

    Google Scholar 

  • Mithen, S. (1988). Looking and learning: Upper Palaeolithic art and information gathering. World Archaeology, 19, 297–327.

    Google Scholar 

  • Morello, J. (1984). Perfil Ecológico de Sudamérica. Características estructurales de Sudamérica y su relación con espacios semejantes del planeta. Barcelona: ICI – Ediciones Cultura Hispánica.

    Google Scholar 

  • Moreno, F. (1997). Reminiscencias del Perito Moreno. Buenos Aires: Elefante Blanco.

    Google Scholar 

  • Neiman, F. (1995). Stylistic variation in evolutionary perspective: Inferences from decorative diversity and interassemblage distance in Illinois woodland ceramic assemblages. American Antiquity, 60(1), 7–36.

    Google Scholar 

  • O’Brien, M. J., & Lyman L. R. (2003). Introduction. In M. J. O’Brien, & L. R. Lyman (Eds.), Style, function, transmission: Evolutionary archaeological perspectives (pp. 1–32). Salt Lake City: University of Utah Press.

    Google Scholar 

  • Onetto, M. (1986–1987). Nuevos resultados de las investigaciones de Campo Nassif 1. Valle de Piedra Parada. Provincia del Chubut. Relaciones de la Sociedad Argentina de Antropología, 17(1), 95–123.

    Google Scholar 

  • Pedersen, A. (1978). Las pinturas rupestres del Parque Nacional Nahuel Huapi. Anales de Parques Nacionales, XVI, 7–43.

    Google Scholar 

  • Pérez de Micou, C. (1979–1882). Sitio Piedra Parada 1 (PP1), departamento Languiñeo, provincia de Chubut (República Argentina). Cuadernos del Instituto Nacional de Antropología y Pensamiento Latinoamericano, 9, 97–111.

    Google Scholar 

  • Pérez de Micou, C., Trivi de Mandri, M., & Burri, L. (2009). Imágenes desde un alero. Investigaciones multidisciplinarias en Río Mayo, Chubut. Patagonia argentina. Buenos Aires: Fundación de Historia Natural Félix de Azara.

    Google Scholar 

  • Podestá, M., Bellelli, C, Labarca, R. Albornoz, A. M., Vasini, A., & Tropea, Y. E. (2008). Arte rupestre en pasos cordilleranos del bosque andino patagónico (El Manso, Región de los Lagos y Provincia de Río Negro, Chile-Argentina). Magallania, 36, 143–153.

    Google Scholar 

  • Podestá, M., Albornoz, A. M., Vasini, A., & Tropea, E. (2009). El sitio Peumayén 2 en el contexto del arte rupestre del bosque andino patagónico. Comechingonia Virtual, 3(2), 117–153. http://www.comechingonia.com. Accessed 6 June 2014.

  • R Development Core Team. (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.

  • Richerson, P., & Boyd, R. (2005). Not by genes alone: How culture transformed human evolution. Chicago: University of Chicago Press.

    Google Scholar 

  • Ross, C., & Richerson, P. (2014). New frontiers in the study of cultural and genetic evolution. Current Opinion in Genetics and Development, 29, 103–109.

    Google Scholar 

  • Scheinsohn, V. (2003). Hunter gatherer archaeology in South America. Annual Review of Anthropology, 32, 339–361.

    Google Scholar 

  • Scheinsohn, V. (2011). Rock art information among hunter-gatherers in Northwest Patagonia: an assessment of broad-scale and territorial models. In R. Whallon, W. Lovis, & K. Hitchcock (Eds.), Information and its role in hunter-gatherer bands (pp. 235–247). Los Angeles: Cotsen Institute of Archaeology Press.

    Google Scholar 

  • Scheinsohn V., & Matteucci, S. (2013). A regional model of archaeological Distributions for Northwestern Andenan Patagonia (Argentina). In M. Figuerero Torres & A. Izeta (Eds.), El uso de Sistemas de Información Geográfica (SIG) en la arqueología sudamericana. (pp. 61–72). Oxford: BAR International Series 2497.

    Google Scholar 

  • Scheinsohn, V., Szumik, C., Leonardt, S., & Rizzo, F. (2009). Distribución espacial del arte rupestre en el bosque y la estepa del norte de Patagonia. Nuevos resultados. In M. Salemme, F. Santiago, M. Álvarez, E. Piana, M. Vázquez, & F. Mansur (Eds.), Arqueología de la Patagonia. Una mirada desde el último confín (pp. 541–558). Ushuaia: Editorial Utopías.

    Google Scholar 

  • Scheinsohn, V., Szumik, C., Leonardt, S., & Rizzo, F. (2015). The “Hidden” Code: Coding and classifying in rock art: A Northwestern Patagonia case study. Journal of Archaeological Method and Theory, pp 1–20. First online: 03 May 2015. DOI 10.1007/s10816-015-9249-8.

  • Schiffer, M. B. (1972). Archaeological context and systemic context. American Antiquity, 37(2), 156–165.

    Google Scholar 

  • Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27; 379–423.

    Google Scholar 

  • Shennan S., & Bentley, R. (2008). Style, interaction, and demography among the earliest farmers of Central Europe. In M. O’Brien (Ed.), Cultural transmission and archaeology: Issues and case studies (pp. 164–177). Washington, DC: Society of American Archaeology Press.

    Google Scholar 

  • Shennan, S., & Wilkinson, R. (2001). Ceramic style change and neutral evolution: A case study from Neolithic Europe. American Antiquity, 66(4), 577–593.

    Google Scholar 

  • Silveira, M. (1988–1989). Un sitio con arte rupestre: el Alero Lariviere (provincia de Neuquén). Relaciones de la Sociedad Argentina de Antropología, 17(2), 75–86.

    Google Scholar 

  • Silveira, M. (1996). Alero Los Cipreses (Provincia del Neuquén, República Argentina). In J. Gómez Otero (Ed.), Arqueología Solo Patagonia (pp. 107–118). Puerto Madryn, Argentina: Centro Nacional Patagónico – Consejo Nacional de Investigaciones Científicas y Técnicas.

    Google Scholar 

  • Silveira, M. (1999). El Alero Lariviere: un sitio en el bosque septentrional andino (Departamento Los Lagos, Provincia de Neuquén, Argentina). In J. B. Belardi, P. Fernández, R. Goñi, G. Guráieb, & M. De Nigris (Eds.), Soplando en el Viento. Actas de las III Jornadas de Arqueología de la Patagonia (pp. 83–92). Neuquén, Argentina: Instituto Nacional de Antropología y Pensamiento Latinoamericano. Universidad Nacional del Comahue, Facultad de Humanidades.

    Google Scholar 

  • Silveira, M. J., & Fernández, M. B. (1991). El arte rupestre de la cuenca del Lago Traful (Provincia del Neuquén). In M. Podestá, M. I. Hernández Llosas, & S. F. Renard de Coquet (Eds.), El arte rupestre en la arqueología contemporánea (pp. 101–112). Buenos Aires: SF.

    Google Scholar 

  • Simonetti, F., Teppa, E., Chernomoretz, A., Nielsen, M., & Buslje, C. (2013). MISTIC: Mutual information server to infer coevolution. Nucleic Acids Research, 41, Web Server issue.

    Google Scholar 

  • Sperber, D. (1996). Explaining culture: A naturalistic approach. New York: Blackwell.

    Google Scholar 

  • Stark, M. T., Bowser, B. J., & Horne, L. (Eds.). (2008). Cultural transmission and material culture. Tucson: The University of Tucson Press.

    Google Scholar 

  • Tehrani J., & Collard, M. (2002). Investigating cultural evolution through biological phylogenetic analyses of Turkmen textiles. Journal of Anthropological Archaeology, 21, 443–463.

    Google Scholar 

  • Torkamaniet, A., Dean, B., Schork, N. J., & Thomas, E. A. (2010). Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia. Genome Research, 20, 403–412.

    Google Scholar 

  • Vignati, M. A. (1944). Antigüedades en la Región de los Lagos Nahuel Huapi y Traful 1- 7. Notas del Museo de La Plata, IX(23), 24–29.

    Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393, 440–442.

    Google Scholar 

  • Whallon, R. (2006). Social networks and information. Non-“utilitarian” mobility among hunter-gatherers. Journal of Anthropological Archaeology, 25, 259–270.

    Google Scholar 

  • Whallon, R. (2011). An introduction to Information and its role in Hunter-Gatherer band-level Societies. In R. Whallon, W. Lovis, & R. Hitchcock (Eds.), Information and its role in Hunter-Gatherer Bands (pp. 1–18). Los Angeles: Cotsen Institute of Archaeology Press, University of California.

    Google Scholar 

  • White, A. (2013). An abstract model showing that the spatial structure of social Networks affects the outcomes of cultural transmission processes. Journal of Artificial Societies and Social Simulation, 16(3), 9. http://jasss.soc.surrey.ac.uk/16/3/9.html. Accessed 03/02/2015.

  • Whitley, D. (2005). Introduction to rock art research. Arizona: Left Coast Press.

    Google Scholar 

  • Whitley, D. (2011). Rock art, religion, and ritual. In T. Insoll (Ed.), Oxford handbook of the archaeology of ritual and religion (pp. 307–326). New York: Oxford University Press.

    Google Scholar 

  • Wobst, H. M. (1977). Stylistic behavior and information exchange. In C. Cleland (Ed.), Papers for the director: Research essays in honor of James B. Griffin. Anthropological Papers 61 (pp. 317–342). Ann Arbor: University of Michigan Museum of Anthropology.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Larissa Mendoza Straffon for inviting us to contribute to this volume. We would also like to thank Mercedes Salado Puerto (EAAF). This work would not have been possible without her. Sabrina Leonardt and Florencia Rizzo contributed to the database. Florencia Rizzo also helped with Figs. 1, 2, and 3. The Comarca Andina del Paralelo 42 Team (Cristina Bellelli, Mariana Carballido, Pablo Férnandez, Ana Forlano, and Mercedes Podestá) made their firsthand database available to us. Finally, we also thank the INAPL staff. Part of this research was funded by FONCYT PICT 2010 N° 1810 and CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés Caridi .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Before defining Mutual Information, we need to introduce the Shannon Information and the Entropy functions. In his classic paper, Shannon (1948) defined entropy (H) as a measure of uncertainty of a random variable. In a communicational process, a given source emits messages that can be stored in an X variable. Departing from probability distribution of X values, entropy quantifies the level of “surprise” the receiver experiences upon receiving each message. If there is no surprise, there is no Information content (Mitchell 2009), because the message is fully predictable.

As an example, we present a rock art case. Let us introduce variable X, which represents a particular motif, which can take two possible values: 0 means the absence of the motif in a particular site and 1 its presence. Let us suppose that we have assessed 8 sites for this particular motif (see Table A1.1).

Table A1.1 Example of variable X representing the absence (when X takes the value 0) and the presence (when X takes the value 1) of a particular motif in 8 different sites

This motif is present in sites 1, 2, 3, and 4, and it is absent in the rest of the sites. From the data, we can compute the probability that X takes value 0 (which we will call \( P\left(X=0\right) \)) and the probability that X takes value 1 (which we will call \( P\left(X=1\right) \)). The probability of X taking a particular value is the frequency of this particular value with respect to the total number of observations. In this example, \( P\left(X=1\right)=\frac{4}{8}=\frac{1}{2} \) (because in 4 of the 8 assessed sites the motif is present) and \( P\left(X=0\right)=\frac{1}{2} \). Let us note that \( P\left(X=1\right)+P\left(X=0\right)=1 \) because X can take only two values in this example. The Shannon Information contained in the outcome value 1 of variable X is defined as

$$ h\left(X=1\right)=-{ \log}_2P\left(X=1\right). $$

The entropy of the variable X is defined as the average of the Shannon Information contained in the possible outcomes, thus:

$$ H(X)=P\left(X=1\right)h\left(X=1\right)+P\left(X=0\right)h\left(X=0\right). $$

The entropy of X for the example is \( H(X)=1 \), because

$$ H\left(X=1\right)=-\frac{1}{2}{ \log}_2\left(\frac{1}{2}\right)-\frac{1}{2}{ \log}_2\left(\frac{1}{2}\right)=\frac{1}{2}+\frac{1}{2}=1 $$

Let us note that:

  • The entropy is always greater than or equal to zero. The particular case of entropy zero occurs when the variable X takes a particular value with probability 1 and the rest of the values with probability 0. Then, the uncertainty of the variable is 0, because we are certain that X will take only one possible value.

  • Entropy H(X) reaches its maximum value when the probability of the occurrence of the outcomes of X variable is uniform. For the particular case of two possible outcomes, H(X) is maximum when the probability of the two outcomes is the same, \( P\left(X=1\right)=P\left(X=0\right)=\frac{1}{2} \), and it reaches the value \( H(X)=1 \). In this scenario, the uncertainty of the variable X is maximum.

Let us complicate our example a little bit further. We will continue with 4 motifs and 8 assessed sites (Table A1.2).

Table A1.2 Example of variables X 1, X 2, X 3 and X 4 representing the presence (when variable takes the value 0) and absence (when variable takes the value 1) of four motifs in each of th3 8 assessed sites

In the case of motif 1 and motif 2 (row 1 and row 2 of Table A1.2), the entropy takes the same value (\( H\left({X}_1\right)=H\left({X}_2\right)=0 \)). This occurs because entropy is a function of the probabilities and not of the values of the outcomes. Entropy does not distinguish between two cases which are symmetric (if we change outcomes 1 for 0 and vice versa). The same happens with motifs 3 and 4 (X 3 and X 4) that reach the same entropy value, which results \( H\left({X}_3\right)=H\left({X}_4\right)=0.81 \).

Now let us compare two other motifs (X and Y) in the same 8 sites. Let us suppose that the observed values result in Table A1.3.

Table A1.3 Example of two variables X and Y representing the presence (when variable takes the value 0) and absence (when variable takes the value 1) of two motifs in 8 sites

We are interested in detecting if there is any type of correlation between these two motifs. Does information about motif 5 give information about motif 6, or are they independent variables? Mutual Information helps to answer this question by quantifying the information gain that we obtain from one variable when we know the other variable and vice versa. The Mutual Information is defined as:

$$ I\left(X,Y\right)=H(X)-H\left(X\Big|Y\right) $$

where \( H\left(X\Big|Y\right) \) is the conditional Entropy of variable X given that we know the variable Y (Cover and Thomas 1991). As we just mentioned, Mutual Information measures the difference in the uncertainty of X variable when we know Y variable and vice versa. When variables X and Y are independent, then the fact of knowing Y does not reduce the uncertainty of X. Formally, \( H\left(X\Big|Y\right)=H(X) \), because the uncertainty of X is the same (regardless of whether Y is known or not). Then \( I\left(X,\ Y\right)=H(X)-H\left(X\Big|Y\right)=0 \), reflecting that the knowledge of one of the variables (X or Y) does not say anything about the other. In the other extreme case, the uncertainty of variable X is fully reduced when we know Y variable, \( H\left(X\Big|Y\right)=0 \) (if we know the value of Y, then the certainty of X variable is complete, because we are sure of the value which X takes), then the Mutual Information is maximum \( I\left(X,\ Y\right)=H(X)-H\left(X\Big|Y\right)=H(X) \).

Returning to the example of Table A1.3, we compute \( I\left(X,\ Y\right)=0.548 \). Thus, X and Y are not independent. We can observe that every time motif 5 is present (X = 1), then motif 6 is present too (Y = 1) (notice that the inverse case is not met: in site 6 although motif 6 is present, motif 5 is absent).

Finally, it is important to remark that Mutual Information does not say anything about the sense of the information gain. Hence, in Table A1.4 we present other example which leads to the same value of Mutual Information as the previous example (\( I\left(X,\ Y\right)=0.548 \)). But in this case, we can note that each time motif 7 is present (X = 1), then motif 8 is absent (Y = 0). Then, motif 7 gives us information about motif 8, but they are negatively correlated.

Table A1.4 Example of two variables X and Y representing the presence (when variable takes the value 0) and absence (when variable takes the value 1) of two motifs in 8 assessed sites

Appendix 2

List of motifs and character states (Taken from Scheinsohn et al. 2009).

figure afigure afigure afigure afigure afigure afigure afigure a

Appendix 3: Simulation

In order to discard the possibility of obtaining the values of Mutual Information of Table 2 by chance, we performed a simulation in which we randomly assigned the same number of 1s and 0s (the amount of “presences” of motifs in the sites) from the database in the Xi variable. We generated 1000 random assignments. The obtained distribution of Mutual Information is shown in Fig. A3.1, where the threshold value u corresponds to a p-value (the probability of finding a case greater than the observed 0.093) of 1.56 % in the distribution of the Mutual Information obtained by random assignment. This means that, for the extreme case of less correlated pairs (on threshold value u 0.093), it is possible to obtain this correlation by random assignment with less than 1.56 (a low probability). Then, we performed another statistical test in which for each pair of motifs, the random assignment was made considering the same value as in our Table 2. For instance, comparing motif 50 with 15, we assigned 1 and 0 taking into account that motif 50 was present in 3 sites and motif 15 was present in 5 sites (see Table 2). We obtained a p-value less than 2 % for the three first cases corresponding to the threshold value u (the first three pairs of Table 2) and less than 0.2 % for the rest of the cases. Notice that these three cases, which are the ones with the greater possibility of being obtained by random, are also the ones with fewer information (given the small sample). Nevertheless we decided to include it on the Mutual Information Network, since in archaeology it is usual to deal with absence of information. In any case, with this exception, this test allows us to sustain that the probability of obtaining these values of Mutual Information correlation with the rest of the pair of motifs is low. These sets of correlated motifs above the threshold value u will be used to construct the MIN, in which nodes represent motifs and links represent the Mutual Information between them.

Fig. A3.1
figure 17

Histogram of Mutual Information values obtained by assigning the amount of 1s and 0s observed in the database randomly in a matrix of 49 columns and 43 rows. The p-value of 0.156 for u means that the probability of obtaining a value of Mutual Information greater than the threshold value is 1.56 %

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Caridi, I., Scheinsohn, V. (2016). Mind the Network: Rock Art, Cultural Transmission, and Mutual Information. In: Mendoza Straffon, L. (eds) Cultural Phylogenetics. Interdisciplinary Evolution Research, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-25928-4_7

Download citation

Publish with us

Policies and ethics