Skip to main content

Predicting Glycemia in Type 1 Diabetes Mellitus with Subspace-Based Linear Multistep Predictors

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

A major challenge for a person with diabetes is to adapt insulin dosage regimens and food intake to keep blood glucose within tolerable limits during daily life activities. The accurate prediction of blood glucose levels in response to inputs would support the patients with invaluable information for appropriate on-the-spot decision making concerning the management of the disease. Against this background, in this paper we propose multistep data-driven predictors to the purpose of predicting blood glucose multiple steps ahead in the future. We formulate the predictors based on the state-space construction step in subspace identification methods for linear systems. The clinical data of 14 type 1 diabetic patients collected during a 3-days long hospital visit were used. We exploited physiological models from the literature to filter the raw information on carbohydrate and insulin intakes in order to retrieve the inputs signals to the predictors. Predictions were based on the collected CGMS measurements, recalibrated against finger stick samples and smoothed through a regularization step. Performances were assessed with respect to YSI blood glucose samples and compared to those achieved with a Kalman filter identified from data. Results proved the competitiveness of the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abbott: FreeStyle Navigator \(^{TM}\) (2013). www.abbottdiabetescare.co.uk. Accessed September 2013

  2. Ajmera, I., Swat, M., Laibe, C., Le Novere, N., Chelliah, V.: The impact of mathematical modeling on the understanding of diabetes and realted complications. CPT Pharmacomet. Syst. Pharmacol. 2(e54) (2013). doi:10.1038/psp.2013.30

    Google Scholar 

  3. Balakrishnan, N., Rangaiah, G., Samavedham, L.: Review and analysis of blood glucose (bg) models in type 1 diabetic patients. Ind. Eng. Chem. Res. 50(21), 12041–12066 (2011)

    Article  Google Scholar 

  4. Balakrishnan, N., Samavedham, L., Rangaiah, G.: Personalized hybrid models for exercise, meal and insulin interventions in type 1 diabetic children and adolescents. Ind. Eng. Chem. Res. 52(36), 13020–13033 (2013)

    Article  Google Scholar 

  5. Bremer, T., Gough, D.A.: Is blood glucose predictable from previous values? Diabetes 48, 445–451 (1999)

    Article  Google Scholar 

  6. Castillo-Estrada, G., Del Re, L., Renard, E.: Nonlinear gain in online prediction of blood glucose profile in type 1 diabetic patients. In: Proceedings of the 49th IEEE Conference on Decision and Control (CDC2009), Atlanta, GA, USA, pp. 1668–1673 (2010)

    Google Scholar 

  7. Castillo-Estrada, G., Kirchsteiger, H., Del Re, L., Renard, E.: Innovative approach for online prediction of blood glucose profile in type 1 diabetes patients. In: Proceedings of the American Control Conference ACC2010, Baltimore, MD, USA, pp. 2015–2020 (2010)

    Google Scholar 

  8. Cescon, M., Johansson, R.: Multi-step-ahead multivariate predictors: a comparative analysis. In: Proceedings of the 49th IEEE Conference on Decision and Control (CDC2010), Atlanta, USA, pp. 2837–2842 (2010)

    Google Scholar 

  9. Cescon, M., Johansson, R.: On data-driven multistep subspace-based linear predictors. In: Proceedings of the 18th IFAC World Congress (IFAC2011), Milano, Italy, pp. 11,447–11,452 (2011)

    Google Scholar 

  10. Dalla Man, C., Camilleri, M., Cobelli, C.: A system model of oral glucose absorption: validation on gold standard data. IEEE Trans. Biomed. Eng. 53(12), 2472–2477 (2006)

    Article  Google Scholar 

  11. Dalla Man, C., Rizza, R.R., Cobelli, C.: Meal simulation model of the glucose-insulin system. IEEE Trans. Biomed. Eng. 54(10), 1740–1749 (2007)

    Article  Google Scholar 

  12. DIAdvisor: The DIAdvisor \(^{\text{ TM }}\) (2012). http://www.diadvisor.eu. Accessed May 2013

  13. Eren-Oruklu, M., Cinar, A., Quinn, L., Smith, D.: Estimation of future glucose concentrations with subject-specific recursive linear models. Diabetes Technol. Ther. 11(4), 243–253 (2009)

    Article  Google Scholar 

  14. Eren-Oruklu, M., Cinar, A., Rollins, D., Quinn, L.: Adaptive system identification for estimating future glucose concentrations and hypoglycemia alarms. Automatica 48, 1892–1897 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Facchinetti, A., Sparacino, G., Cobelli, C.: Reconstruction of glucose in plasma from interstitial fluid continuous glucose monitoring data: role of sensor calibration. J Diabetes Sci. Technol. 1(5), 617–623 (2007)

    Article  Google Scholar 

  16. Finan, D., Palerm, C., Doyle, J., Seborg, D.: Effect of input excitation on the quality of empirical dynamic modes for type 1 diabetes. Process Syst. Eng. 55(5), 1135–1146 (2009)

    Google Scholar 

  17. Gani, A., Andrei, G., Srinivasan, R., Ward, K., Jaques, R.: Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling. IEEE Trans. Biomed. Eng. 56(2), 246–254 (2009)

    Article  Google Scholar 

  18. Golub, G., Van Loan, C.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  19. Hemocue: HemoCue \(\textregistered \) (2013). www.hemocue.com. Accessed September 2013

  20. International Organization for Standardization (ISO), Publication 15197: In vitro diagnostic test systems: requirements for blood glucose monitoring systems for self-testing in managing diabetes mellitus, Geneva (2003)

    Google Scholar 

  21. Katayama, T., Picci, G.: Realization of stochastic systems with exogenous inputs and subspace identification methods. Automatica 35, 1635–1652 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. King, C., Anderson, S., Breton, M., Clarke, W., Kovatchev, B.: Modeling and calibration effectiveness and blood-to-interstitial glucose dynamics as potential confounders of the accuracy of continuous glucose sensors during hyperinsulinemic clamp. J. Diabetes Sci. Technol. 1(3), 317–322 (2007)

    Article  Google Scholar 

  23. Kovatchev, B., Gonder-Frederik, L., Cox, D., Clarke, W.: Evaluating the accuracy of continuous glucose-monitoring sensors. Diabetes Care 27(8), 1922–1928 (2004)

    Article  Google Scholar 

  24. Kovatchev, B., Breton, M., Cobelli, C., Dalla Man, C.: Method, system and computer simulation environment for testing of monitoring and control strategies in diabetes (2008)

    Google Scholar 

  25. Kovatchev, B., Breton, M., Dalla Man, C., Cobelli, C.: In silico model and computer simulation environment approximating the human glucose/insulin utilization. Master File MAF-1521, Food and Drug Administration (FDA), Silver Spring, MA (2008)

    Google Scholar 

  26. MathWorks: MathWorks (2013). www.mathworks.com/products/matlab/

  27. Mougiakakou, S., Prountzou, A., Iliopoulou, D., Nikita, K., Vazeou, A., Bartsocas, C.: Neural network based glucose-insulin metabolism models for children with type 1 diabetes. In: Proceedings of 28th IEEE EMBS, vol. 2, pp. 3545–3548. Piscataway, NJ (2006)

    Google Scholar 

  28. Naumova, V., Pereverzyev, S., Sivananthan, S.: A meta-learning approach to the regularized learning-case study: blood glucose prediction. Neural Netw. 33(9), 181–193 (2012)

    Article  MATH  Google Scholar 

  29. Pappada, S., Cameron, B., Rosman, P., Bourey, R., Papadimos, T., Olorunto, W., Borst, M.: Neural network-based real-time prediction of blood glucose in patients with insulin-dependent diabetes. Diabetes Technol. Ther. 13(2), 135–141 (2011)

    Article  Google Scholar 

  30. Sparacino, G., Zanderigo, F., Maran, A., Facchinetti, A., Cobelli, C.: Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans. Biomed. Eng. 54(5), 931–937 (2007)

    Article  Google Scholar 

  31. Sparacino, G., Facchinetti, A., Maran, A., Cobelli, C.: Continuous glucose monitoring time series and hypo/hyper glycemia prevention: requirements, methods, open problems. Current Diabetes Rev. 4(3), 181–192 (2008)

    Article  Google Scholar 

  32. The American Diabetes Association: Standards of medical care in diabetes 2013. Diabetes Care 36(Supplement 1), S11–S66 (2013)

    Google Scholar 

  33. Tikhonov, A., Arsenin, V.: Solutions of Ill-Posed Problems. Winston, Washington (1977)

    MATH  Google Scholar 

  34. Van Overschee, P., De Moor, B.: Subspace Identification for Linear Systems : Theory-Implementation-Application. Kluwer Academic Publishers, Boston (1996)

    Book  MATH  Google Scholar 

  35. Verhaegen, M.: Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica 30(1), 61–74 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Williams, G., Pickup, J.: Handbook of Diabetes, 2nd edn. Blackwell Science, Oxford (1992)

    Google Scholar 

  37. Zecchin, C., Facchinetti, A., Sparacino, G., De Nicolao, G., Cobelli, C.: A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information. In: Proceedings of the of 33rd International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC2011), Boston, Massachussets, USA (2011)

    Google Scholar 

  38. Zecchin, C., Facchinetti, A., Sparacino, G., De Nicolao, G., Cobelli, C.: Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans. Biomed. Eng. 59(6), 1550–1560 (2012)

    Article  Google Scholar 

  39. Zecchin, C., Facchinetti, A., Sparacino, G., Cobelli, C.: Reduction of number and duration of hypoglycemic events by glucose prediction methods: a proof-of-concept in silico study. Diabetes Technol. Ther. 15(1), 66–77 (2013)

    Article  Google Scholar 

  40. Zhao, C., Dassau, E., Jovanovic, L., Zisser, H., Doyle, F., Seborg, D.: Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus. J. Diabetes Sci. Technol. 6(3), 617–633 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partly supported by the European project DIAdvisor \(^{\text {TM}}\), FP7 IST-216592 and the Swedish Research Council by the LCCC Linnaeus Center and the ELLIIT Excellence Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cescon, M., Johansson, R., Renard, E. (2016). Predicting Glycemia in Type 1 Diabetes Mellitus with Subspace-Based Linear Multistep Predictors. In: Kirchsteiger, H., Jørgensen, J., Renard, E., del Re, L. (eds) Prediction Methods for Blood Glucose Concentration. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-25913-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25913-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25911-6

  • Online ISBN: 978-3-319-25913-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics