Skip to main content

Study of Carbon Nanostructures for Soil Fertility Improvement

  • Chapter
  • First Online:
Bioengineering Applications of Carbon Nanostructures

Abstract

Keeping organic matter in the soil is one of the most promising carbon capture and storage methods. Soil organic matter has the longest soil persistence and cause soil amelioration. The “Terra Preta de Índio” (Amazonian Dark Earth) is an anthropogenic Amazonian soil that provides a potential model for such organic matter soil storage, generating a sustainable land-use system that is highly efficient even in the hot and humid tropical regions. The large amount of carbon-based materials in these soils is responsible for their unusually high fertility over long periods of usage. In this chapter, by applying materials science tools, including scanning and transmission electron microscopy, energy dispersive X-ray, electron energy loss spectroscopy and Raman spectroscopy, we show that these millenary carbon materials exhibit a complex morphology, with particles ranging in size from micrometers to nanometers, from the core to the surface of the carbon grains, and are rich on specific elements that are important for fertility and carbon stability. Specifically, calcium and oxygen are abundant in the whole carbon structure, and the role of these elements on carbon stability is studied theoretically. From one side, our results might elucidate how nature solved the problem of keeping high levels of ion exchange capacity in these soils. From the other side, morphology and dimensionality are the key issues in nanotechnology, and the structural aspects revealed here may help generating the “Terra Preta Nova” (New Black Earth), effectively improving world agriculture and ecosystem sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neves EG, Petersen JB, Bartone RN, Heckenberger MJ (2004) Amazonian dark earths: explorations in space and time. In: Glasser B, Woods WI (eds). Springer, Berlin, p. 125

    Google Scholar 

  2. Sombroek W, Ruivo ML, Fernside PM, Glaser B, Lehmann J (2003) Amazonian dark earths: origin, properties, management. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds). Kluwer Academic Publishers, Dordrecht, pp 125–140

    Google Scholar 

  3. Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Google Scholar 

  4. Schmidt MWI et al (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  Google Scholar 

  5. Stockmann U et al (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agr Ecosyst Environ 164:80–99

    Article  Google Scholar 

  6. Marris E (2006) Putting the carbon back: Black is the new green. Nature 442:624–626

    Article  Google Scholar 

  7. Lehmann J et al (2008) Spatial complexity of soil organic matter forms at nanometre scales. Nat Geosci 1:238–242

    Article  Google Scholar 

  8. Novotny EH et al (2009) Lessons from the Terra Preta de Índios of the Amazon region for the utilisation of charcoal for soil amendment. J Braz Chem Soc 20:1003–1010

    Article  Google Scholar 

  9. Novotny EH, Hayes MHB, Madari BE, Bonagamba TJ, deAzevedo ER, de Souza AA, Song G, Nogueira CM, Magrich AS (2009) Lessons from the Terra Preta de Índios of the Amazon region for the utilisation of charcoal for soil amendment. J Braz Chem Soc 20(6):1003–1010

    Article  Google Scholar 

  10. Achard F, Eva HD, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002

    Article  Google Scholar 

  11. Kern DC, D’Aquino G, Rodrigues TE, Frazão FJL, Sombroek W, Myers TP, Neves EG (2003) Amazonian dark earths: origin, properties, management. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds). Kluwer Academic Publishers, Dordrecht, pp. 51–75

    Google Scholar 

  12. Smith NJH (1980) Anthrosols and human carrying-capacity in Amazonia. Ann Assoc Am Geogr 70:553

    Article  Google Scholar 

  13. Liang B et al (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  Google Scholar 

  14. Falcão NPS, Comerford N, Lehmann J (2003) Determining nutrient bioavailability of amazonian dark earth soils—methodological challenges. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths. Kluwer Academic Publishers, Origins, Properties, Management, pp 255–270

    Chapter  Google Scholar 

  15. Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230

    Article  Google Scholar 

  16. Glaser B (2007) Prehistorically modified solids of central Amazonia: a model for sustainable agriculture in the twenty-first centure. Philos. Trans R Soc 362:187–196

    Article  Google Scholar 

  17. Blackmore AC, Mentis MT, Scholes RJ (1990) The origin and extent of nutrientenriched patches within a nutrient-poor savanna in South Africa. J Biogeogr 17:463–470

    Article  Google Scholar 

  18. Zech W, Haumaier L, Hempfling R (1990) Ecological aspects of soil organic matter in tropical land use. In: McCarthy P, Clapp CE, Malcolm RL, Bloom PR (eds) Humic substances in soil and crop sciences: selected readings. American Society of Agronomy and Soil Science Society of America, Madison, pp 187–202

    Google Scholar 

  19. Simões MF (1982) A Pré-História da Bacia Amazônica: Uma tentativa de reconstituição. Cultura Indígena. Textos e Catálogo, Semana do Índio, Museu Goeldi, Belém, pp 5–21

    Google Scholar 

  20. Kern D.C (1996) Geoquímica e Pedogeoquímica em sítios Arqueológicos com terra preta na Floresta Nacional de Caxiuanã. Ph.D. thesis, Universidade Federal do Pará, Belém Portel-PA, Brazil

    Google Scholar 

  21. Cheng CH, Lehmann J (2009) Ageing of black carbon along a temperature gradient. Chemosphere 75(8):1021–1027

    Article  Google Scholar 

  22. Glaser B, Haumaier L, Guggenberger B, Zech W (2001) The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41

    Article  Google Scholar 

  23. Briones A (2012) The secrets of El Dorado viewed through a microbial perspective. Front Microbiol 3(239):1–6

    Google Scholar 

  24. Lehmann J, Rondon M (2006) Biological approaches to sustainable soil systems. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds). CRC Press/Taylor & Francis Group, Florida, pp 517–526

    Google Scholar 

  25. Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macêdo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275

    Article  Google Scholar 

  26. Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32(5):759–769

    Article  Google Scholar 

  27. Dresselhaus MS (1998) The wonderful world of carbon. In: Yoshimura S, Chang RPH (eds) Supercarbon: synthesis, properties and applications. Springer, Berlin

    Google Scholar 

  28. Noorden RV (2011) The trials of new carbon. Nature 469:14–16

    Article  Google Scholar 

  29. Haumaier L, Zech W (1995) Black carbon—possible source of highly aromatic components of soil humic acids. Org Geochem 23:191

    Article  Google Scholar 

  30. Novotny EH, Hayes MHB, Madari BE, Bonagamba TJ, deAzevedo ER, de Souza AA, Song G, Nogueira CM, Mangrich AS (2009) J Bra Chem Soc 20:1003

    Google Scholar 

  31. Jorio A, Ribeiro-Soares J, Cançado LG, Falcão NPS, Dos Santos HF, Baptista DL, Martins Ferreira EH, Archanjo BS, Achete CA (2012) Soil Till. Res 122:61

    Google Scholar 

  32. Mann CC (2002) The real dirt on rainforest fertility. Science 297:920

    Article  Google Scholar 

  33. Glaser B, Balashov E, Haumaier L, Guggenberger G, Zech W (2000) Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org Geochem 31:669

    Article  Google Scholar 

  34. Archanjo BS, Baptista DL, Sena LA, Cançado LG, Falcão NPS, Jorio A, Achete CA (2015) Nanoscale mapping of carbon oxidation in pyrogenic black carbon from ancient Amazonian anthrosols. Environ Sci Process Impacts 17:775

    Google Scholar 

  35. Lehmann J, Liang B, Solomon D, Lerotic M, Luizão F, Kinyangi J, Schäfer T, Wirick S, Jacobsen C (2005) Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles. Global Biogeochem. Cycles 19:GB1013

    Google Scholar 

  36. Chia CH, Munroe P, Joseph S, Lin Y (2010) Microscopic characterisation of synthetic Terra Preta. Aust J Soil Res 48:593–605

    Article  Google Scholar 

  37. Arroyo-Kalin M, Neves EG, Woods WI (2009) Anthropogenic dark earths of the central amazon region: remarks on their evolution and polygenetic composition. In: Woods W, Teixeira W, Lehmann J, Steiner C, WinklerPrins A, Rebellato L (eds) Amazonian dark earths: Wim Sombroek’s vision. Springer, Netherlands, pp 99–125

    Chapter  Google Scholar 

  38. Batson PE (1993) Carbon 1s near-edge-absorption fine structure in graphite. Phys. Rev. B 48:042608–042610

    Article  Google Scholar 

  39. Ma Y, Skytt P, Wassdahl N, Glans P, Mancini DC, Guo J, Nordgren J (1993) Core excitons and vibronic coupling in diamond and graphite. Phys Rev Lett 71:223725–223728

    Google Scholar 

  40. Archanjo BS, Araujo JR, Silva AM, Capaz RB, Falcão NPS, Jorio A, Achete CA (2014) Chemical analysis and molecular models for calcium–oxygen–carbon interactions in black carbon found in fertile Amazonian anthrosoils. Environ Sci Technol 48:7445–7452

    Article  Google Scholar 

  41. Filik J, May PW, Pearce SRJ, Wild RK, Hallam KR (2003) XPS and laser Raman analysis of hydrogenated amorphous carbon films. Diam Relat Mater 12:974–978

    Article  Google Scholar 

  42. Larciprete R, Lacovig P, Gardonio S, Baraldi A, Lizzit S (2012) Atomic oxygen on graphite: chemical characterization and thermal reduction. J Phys Chem C 116:9900–9908

    Article  Google Scholar 

  43. Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO, Luizao FJ, Engelhard MH, Neves EG, Wirick S (2008) Stability of biomass-derived black carbon in soils. Geochim Cosmochim Acta 72:6069–6078

    Article  Google Scholar 

  44. Lin Y, Munroe P, Joseph S, Kimber S, Van Zwieten L (2012) Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy. Plant Soil 357:369–380

    Article  Google Scholar 

  45. Ji X, Chen Y, Zhao G, Wang X, Liu W (2011) Tribological properties of CaCO3 nanoparticles as an additive in lithium grease. Tribol Lett 41:113–119

    Article  Google Scholar 

  46. Zu Y, Tang J, Zhu W, Zhang M, Liu G, Liu Y, Zhang W, Jia M (2011) Graphite oxide-supported CaO catalysts for transesterification of soybean oil with methanol. Bioresour Technol 102:8939–8944

    Article  Google Scholar 

  47. Dahle S, Voigts F, Maus-Friedrichs W (2011) In situ preparation of Calcium hydroxide films. Thin Solid Films 520:18–24

    Article  Google Scholar 

  48. Ide-Ektessabi A, Yamaguchi T, Tanaka Y (2005) RBS and XPS analyses of the composite calcium phosphate coatings for biomedical applications. Nuclear Instrum Methods Phys ResSect B-Beam Interact Mater Atoms 241:685–688

    Article  Google Scholar 

  49. Ohtsu N, Hiromoto S, Yamane M, Satoh K, Tomozawa M (2013) Chemical and crystallographic characterizations of hydroxyapatite- and octacalcium phosphate-coatings on magnesium synthesized by chemical solution deposition using XPS and XRD. Surf Coat Technol 218:114–118

    Article  Google Scholar 

  50. Sato S, Neves EG, Solomon D, Liang BQ, Lehmann J (2009) Biogenic calcium phosphate transformation in soils over millennial time scales. J Soils Sediments 9:194–205

    Article  Google Scholar 

  51. Cazorla C, Shevlin SA, Guo ZX (2011) Calcium-based functionalization of carbon materials for CO2 capture: A first-principles computational study. J Phys Chem C 115:10990–10995

    Article  Google Scholar 

  52. Wang X, Bai H, Jia Y, Zhi L, Qu L, Xu Y, Li C, Shi G (2012) Synthesis of CaCO3/graphene composite crystals for ultra-strong structural materials. RSC Adv 2:2154–2160

    Article  Google Scholar 

  53. Andersson GG, van Gennip WJH, Niemantsverdriet JW, Brongersma HH (2002) Calcium induced oxidation of PPV studied with X-ray photoelectron spectroscopy and secondary ion mass spectrometry. Chem Phys 278:159–167

    Article  Google Scholar 

  54. Christie AB, Lee J, Sutherland I, Walls JM (1983) AN XPS study of ion-induced compositional changes with group-II and group-IV compounds. Appl Surf Sci 15:224–237

    Article  Google Scholar 

  55. Keiluweit M, Kleber M (2009) Molecular-level interactions in soils and sediments: the role of aromatic pi-systems. Environ Sci Technol 43:3421–3429

    Article  Google Scholar 

  56. Landis WJ, Martin JR (1984) X-ray photoelectron-spectroscopy applied to gold-decorated mineral standards of biological interest. J Vac Sci Technol Vac Surf Films 2:1108–1111

    Article  Google Scholar 

  57. Kalinichev AG, Iskrenova-Tchoukova E, Ahn WY, Clark MM, Kirkpatrick RJ (2011) Effects of Ca2+on supramolecular aggregation of natural organic matter in aqueous solutions: a comparison of molecular modeling approaches. Geoderma 169:27–32

    Article  Google Scholar 

  58. Tunega D, Gerzabek MH, Totsche KU (2011) Advances of molecular modeling of biogeochemical interfaces in soils. Geoderma 169:1–3

    Article  Google Scholar 

  59. Lee DW, De Los Santos LV, Seo JW, Felix LL, Bustamante DA, Cole JM, Barnes CHW (2010) The structure of graphite oxide: investigation of its surface chemical groups. J Phys Chem B 114:5723–5728

    Google Scholar 

  60. Lerf A, He HY, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    Article  Google Scholar 

  61. Lu N, Huang Y, Li H-B, Li Z, Yang J (2010) First principles nuclear magnetic resonance signatures of graphene oxide. J Chem Phys 133

    Google Scholar 

  62. Ni J, Pignatello JJ, Xing B (2011) Adsorption of aromatic carboxylate ions to black carbon (biochar) is accompanied by proton exchange with water. Environ Sci Technol 45:9240–9248

    Article  Google Scholar 

  63. Stewart JJP (1989) Optimization of parameters for semiempirical methods. I Method J Comp Chem 10:209–220

    Article  Google Scholar 

  64. Suzuki T, Hasegawa T, Mukai SR, Tamon H (2003) A theoretical study on storage states of Li ions in carbon anodes of Li ion batteries using molecular orbital calculations. Carbon 41:1933–1939

    Article  Google Scholar 

  65. Ferrari AC, Robertson J (2000) Interpretation of Raman Spectra of disordered and amorphous carbons. Phys Rev B 61(20):14095–14107

    Article  Google Scholar 

  66. Ferrari AC, Robertson J (2001) Resonant raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B 64:075414

    Article  Google Scholar 

  67. Cançado LG, Takai K, Enoki T, Endo M, Kim YA (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106

    Article  Google Scholar 

  68. Cançado LG, Jorio A, Pimenta MA (2007) Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Phys Rev B 76:064304

    Article  Google Scholar 

  69. Takai K, Oga M, Sato H, Enoki T, Ohki Y, Taomoto A, Suenaga K, Iijima S (2003) Structure and electronic properties of a nongraphitic disordered carbon system and its heat-treatment effects. Phys. Rev. B 67:214202

    Article  Google Scholar 

  70. Lucchese MM, Stavale F, Martins Ferreira EH, Vilani C, Moutinho MVO, Capaz RB, Achete CA, Jorio A (2010) Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48(5):1592–1597

    Article  Google Scholar 

  71. Martins Ferreira EH, Moutinho MVO, Stavale F, Lucchese MM, Capaz RB, Achete CA, Jorio A (2010) Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys Rev B 82:125429

    Article  Google Scholar 

  72. Cançado LG, Jorio A, Martins Ferreira EH, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala TS, Ferrari AC (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11:3190–3196

    Article  Google Scholar 

  73. Ribeiro-Soares J, Cançado LG, Falcão NPS, Martins Ferreira EH, Achete CA, Jorio A (2013) The use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils. J Raman Spectrosc 44:283–289

    Article  Google Scholar 

  74. Pagano MC, Ribeiro-Soares J, Cançado LG, Falcão NPS, Gonçalves VN, Rosa LH, Takahashi JA, Achete CA, Jorio A (2015) Depth dependence of black carbon structure, elemental and microbiological composition in anthropic Amazonian dark soil. Soil Till Res 155:298–307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ado Jorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jorio, A. et al. (2016). Study of Carbon Nanostructures for Soil Fertility Improvement. In: Jorio, A. (eds) Bioengineering Applications of Carbon Nanostructures. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-25907-9_6

Download citation

Publish with us

Policies and ethics