Skip to main content

Bone Repair Utilizing Carbon Nanotubes

  • Chapter
  • First Online:
Bioengineering Applications of Carbon Nanostructures

Abstract

One of the major challenges for researchers working on bone tissue engineering is developing biocomposites able to accelerate the repair of bone defects, thereby reducing the time and costs of patients rehabilitation. Since their discovery, carbon nanotubes (CNTs) have captivated investigators worldwide due to their remarkable mechanical, thermal and electrical properties, as well as their functionalization capability and biocompatibility. Recent studies have demonstrated that CNTs are among the unique biomaterials that hold potential clinical applications in bone tissue engineering and orthopedic procedures due to their impressive capacity of accelerating bone repair/regeneration. Significant progress has been achieved regarding the effects of CNTs associated or not with polymers in different experimental models (in vitro and in vivo). The purpose of this chapter is to summarize the recent developments in bone repair/regeneration using CNTs or CNT-based composites and to provide insights concerning future possible applications of CNTs on bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tran PA, Zhang L, Webster TJ (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev 61:1097–1114

    Article  Google Scholar 

  2. Martins-Júnior PA, Alcântara CE, Resende RR, Ferreira AJ (2013) Carbon nanotubes: directions and perspectives in oral regenerative medicine. J Dent Res 92(7):575–583

    Article  Google Scholar 

  3. Chew KK, Low KL, Sharif Zein SH, McPhail DS, Gerhardt LC, Roether JA et al (2011) Reinforcement of calcium phosphate cement with multi-walled carbon nanotubes and bovine serum albumin for injectable bone substitute applications. J Mech Behav Biomed Mater 4(3):331–339

    Article  Google Scholar 

  4. Lahiri D, Ghosh S, Agarwal A (2012) Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review. Mater Sci Eng, C 32:1727–1758

    Article  Google Scholar 

  5. Malarkey EB, Parpura V (2010) Carbon nanotubes in neuroscience. Acta Neurochir Suppl 106:337–341

    Article  Google Scholar 

  6. Mattson MP, Haddon RC, Rao AM (2000) Molecular functionalization of carbon nanotubes use as substrates for neuronal growth. J Mol Neurosci 14(3):175–182

    Article  Google Scholar 

  7. Chang TM, Prakash S (2001) Procedures for microencapsulation of enzymes, cells and genetically engineered microorganisms. Mol Biotechnol 17(3):249–260

    Article  Google Scholar 

  8. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294(5547):1684–1688

    Article  Google Scholar 

  9. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74(1–3):47–61

    Article  Google Scholar 

  10. Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6(3):562–567

    Article  Google Scholar 

  11. Xu J, Fisher T (2006) Enhancement of thermal interface materials with carbon nanotube arrays. Int J Heat Mass Transf 49(9–10):1658–1666

    Article  Google Scholar 

  12. Bekyarova E, Ni Y, Malarkey EB, Montana V, McWilliams JL, Haddon RC et al (2005) Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol 1(1):3–17

    Article  Google Scholar 

  13. Zarbin AJG (2007) Química de (nano)materiais. Quim Nova 30(6):1469–1479

    Article  Google Scholar 

  14. Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N (2010) Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 46(3):281–283

    Article  Google Scholar 

  15. Bhattacharyya S, Guillot S, Dabboue H, Tranchant JF, Salvetat JP (2008) Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules 9(2):505–509

    Article  Google Scholar 

  16. Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM et al (2006) Functionalization density dependence of single-walled carbon nanotubos cytotoxicity in vitro. Toxicol Lett 161(2):135–142

    Article  Google Scholar 

  17. Mendes RM, Silva GA, Caliari MV Silva EE, Ladeira LO, Ferreira AJ (2010) Effects of single wall carbon nanotubes and its functionalization with sodium hyaluronate on bone repair. Life Sci 87(7–8):215–222

    Google Scholar 

  18. Sá M, Andrade V, Mendes R, Caliari M, Ladeira L, Silva E et al (2013) Carbon nanotubes functionalized with sodium hyaluronate restore bone repair in diabetic rat sockets. Oral Dis 19(5):484–493

    Article  Google Scholar 

  19. Silva EE, Della Colleta HHM, Ferlauto AS, Moreira RL, Resende RR, Oliveira S et al (2009) Nanostructured 3-D collagen/nanotube biocomposites for future bone regeneration scaffolds. Nano Res 2:462–473

    Article  Google Scholar 

  20. Sitharaman B, Shi X, Walboomers XF, Liao H, Cuijpers V, Wilson LJ et al (2008) In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43(2):362–370

    Article  Google Scholar 

  21. Gelse K, Pöschl E, Aigner T (2003) Collagens–structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546

    Article  Google Scholar 

  22. Bonucci E (2012) Bone mineralization. Front Biosci (Landmark Ed) 17:100–128

    Google Scholar 

  23. Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11:18–25

    Article  Google Scholar 

  24. Zhao B, Hu H, Mandal SK, Haddon RC (2005) A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem Mat 17:3235–3241

    Article  Google Scholar 

  25. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    Article  Google Scholar 

  26. Tutak W, Park KH, Vasilov A, Starovoytov V, Fanchini G, Cai SQ et al (2009) Toxicity induced enhanced extracellular matrix production in osteoblastic cells cultured on single-walled carbon nanotube networks. Nanotechnology 20(25):255101

    Article  Google Scholar 

  27. Pacifici R (1998) Cytokines, estrogen, and postmenopausal osteoporosis—the second decade. Endocrinology 139(6):2659–2661

    Article  Google Scholar 

  28. Narita N, Kobayashi Y, Nakamura H, Maeda K, Ishihara A, Mizoguchi T (2009) Multiwalled carbon nanotubes specifically inhibit osteoclast differentiation and function. Nano Lett 9(4):1406–1413

    Article  Google Scholar 

  29. Abarrategi A, Gutiérrez MC, Moreno-Vicente C, Hortigüela MJ, Ramos V, López-Lacomba et al (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29(1):94–102

    Google Scholar 

  30. Shimizu M, Kobayashi Y, Mizoguchi T, Nakamura H, Kawahara I, Narita N et al (2012) Carbon nanotubes induce bone calcification by bidirectional interaction with osteoblasts. Adv Mater 24(16):2176–2185

    Article  Google Scholar 

  31. Mishima N, Sahara N, Shirakawa M, Ozawa H (2002) Effect of streptozotocin-induced diabetes mellitus on alveolar bone deposition in the rat. Arch Oral Biol 47(12):843–849

    Article  Google Scholar 

  32. Liao CZ, Li K, Wong HM, Tong WY, Yeung KW, Tjong SC (2012) Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Mat Sci Eng C 33(3):1380–1388

    Article  Google Scholar 

  33. Pan L, Pei X, He R, Wan Q, Wang J (2012) Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloids Surf B Biointerfaces 93:226–234

    Article  Google Scholar 

  34. Cheng Q, Rutledge K, Jabbarzadeh E (2013) Carbon nanotube-poly(lactide- co-glycolide) composite scaffolds for bone tissue engineering applications. Ann Biomed Eng 41(5):904–916

    Article  Google Scholar 

  35. Gupta A, Woods MD, Illingworth KD, Niemeier R, Schafer I, Cady C et al (2013) Single walled carbon nanotube composites for bone tissue engineering. J Orthop Res 31(9):1374–1381

    Article  Google Scholar 

  36. Mendes RM, Silva GA, Lima MF, Calliari MV, Almeida AP, Alves JB et al (2008) Sodium hyaluronate accelerates the healing process in tooth sockets of rats. Arch Oral Biol 53(12):1155–1162

    Article  Google Scholar 

  37. Spear RL, Cameron RE (2008) Carbon nanotubes for orthopaedic implants. Int J Mater Form 1:127–133

    Article  Google Scholar 

  38. Kotela I, Podporska J, Soltysiak E, Konsztowicz KJ, Blazewicz M (2009) Polymer nanocomposites for bone tissue substitutes. Ceram Int 35(6):2475–2480

    Article  Google Scholar 

  39. Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552–5555

    Article  Google Scholar 

  40. Heister E, Brunner EW, Dieckmann GR, Jurewicz I, Dalton AB (2013) Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl Mater Interfaces 5(6):1870–1891

    Article  Google Scholar 

  41. Webster TJ (2001) Nanophase ceramics: the future orthopedic and dental implant material. Adv Chem Eng 27:125–166

    Article  Google Scholar 

  42. Usui Y, Aoki K, Narita N, Murakami N, Nakamura I, Nakamura K et al (2008) Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small 4(2):240–246

    Article  Google Scholar 

  43. Curtin WA, Sheldon BW (2004) CNT-reinforced ceramics and metals. Materials Today 7:44–49

    Google Scholar 

  44. White AA, Best SM, Kinloch IA (2007) Hydroxyapatite–carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Tec 4:1–13

    Article  Google Scholar 

  45. Wang W, Zhu Y, Watari F, Liao S, Yokoyama A, Omori M et al (2012) Carbon nanotubes/hydroxyapatite nanocomposites fabricated by spark plasma sintering for bonegraft applications. Appl Surf Sci 262:194–199

    Article  Google Scholar 

  46. Choi JW, Kong YM, Kim HE (1998) Reinforcement of hydroxyapatite bioceramic by addition of Ni3Al and Al2O3. J Am Ceram Soc 81(7):1743–1748

    Article  Google Scholar 

  47. Marrs B, Andrews R, Rantell T, Pienkowski D (2006) Augmentation of acrylic bone cement with multiwall carbon nanotubes. J Biomed Mater Res 77(2):269–276

    Article  Google Scholar 

  48. Marrs B (2007) Carbon nanotube augmentation of a bone cement polymer. Ph.D. thesis, University of Kentucky, US

    Google Scholar 

  49. Ormsby R, McNally T, Mitchell C, Dunne N (2010) Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: effects on mechanical and thermal properties. J Mech Behav Biomed Mater 3(2):136–145

    Article  Google Scholar 

  50. Boutin P, Christel P, Dorlot JM, Meunier A, de Roquancourt A, Blanquaert D et al (1988) The use of dense alumina–alumina ceramic combination in total hip replacement. J Biomed Mater Res 22(12):1203–1232

    Article  Google Scholar 

  51. Ogihara N, Usui Y, Aoki K, Shimizu M, Narita N, Hara K et al (2012) Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes. Nanomedicine (Lond) 7(7):981–993

    Article  Google Scholar 

  52. Ueda K, Oba S, Omiya Y, Okada M (2001) Cranial-bone defects with depression deformity treated with ceramic implants and free-flap transfers. Br J Plast Surg 54(5):403–408

    Article  Google Scholar 

  53. Bassim MK, Buss E, Clark MS, Kolln KA, Pillsbury CH, Pillsbury HC 3rd et al (2005) MED- EL Combi40+ cochlear implantation in adults. Laryngoscope 115(9):1568–1573

    Article  Google Scholar 

  54. Ohgushi H, Kotobuki N, Funaoka H, Machida H, Hirose M, Tanaka Y et al (2005) Tissue engineered ceramic artificial joint–ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis. Biomaterials 26(22):4654–4661

    Article  Google Scholar 

  55. Bal BS, Greenberg DD, Buhrmester L, Aleto TJ (2006) Primary TKA with a zirconia ceramic femoral component. J Knee Surg 19(2):89–93

    Google Scholar 

  56. Raigrodski AJ, Chiche GJ, Potiket N, Hochstedler JL, Mohamed SE, Billiot S et al (2006) The efficacy of posterior three-unit zirconium-oxide-based ceramic fixed partial dental prostheses: a prospective clinical pilot study. J Prosthet Dent 96(4):237–244

    Article  Google Scholar 

  57. Pirker A, Kocher A (2009) Immediate, non-submerged, root-analogue zirconia implants placed into single-rooted extraction sockets: 2-year follow-up of a clinical study. J Oral Maxillofac Surg 38(11):1127–1132

    Article  Google Scholar 

  58. Krell A, Klimake J (2006) Effects of the homogeneity of particle coordination on solid-state sintering of transparent alumina. J Am Ceram Soc 89(6):1985–1992

    Article  Google Scholar 

  59. Affatato S, Traina F, Toni A (2011) Microseparation and stripe wear in alumina-on-alumina hip implants. Int J Artif Organs 34(6):506–512

    Article  Google Scholar 

  60. Sirivisoot S, Yao C, Xiao X, Sheldon BW, Webster TJ (2007) Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnology 18:365102

    Article  Google Scholar 

  61. Jell G, Verdejo R, Safinia L, Shaffer MSP, Stevens MM, Bismarck A (2008) Carbon nanotube-enhanced polyurethane scaffolds fabricated by thermally induced phase separation. J Mater Chem 18(16):1865–1872

    Article  Google Scholar 

  62. Tonelli FM, Santos AK, Gomes KN, Lorençon E, Guatimosim S, Ladeira LO et al (2012) Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering. Int J Nanomedicine 7:4511–4529

    Google Scholar 

  63. Brammer KS, Frandsen CJ, Jin S (2012) TiO2 nanotubes for bone regeneration. Trends Biotechnol 30(6):315–322

    Article  Google Scholar 

  64. Hsu YT, Wang HL (2013) How to select replacement grafts for various periodontal and implant indications. Clin Adv Periodont 3(3):167–179

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson José Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martins-Júnior, P.A., de Sá, M.A., Andrade, V.B., Ribeiro, H.J., Ferreira, A.J. (2016). Bone Repair Utilizing Carbon Nanotubes. In: Jorio, A. (eds) Bioengineering Applications of Carbon Nanostructures. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-25907-9_1

Download citation

Publish with us

Policies and ethics