Skip to main content

Full-Body Human Pose Estimation by Combining Geodesic Distances and 3D-Point Cloud Registration

  • Conference paper
  • First Online:
Book cover Advanced Concepts for Intelligent Vision Systems (ACIVS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9386))

Abstract

In this work, we address the problem of recovering the 3D full-body human pose from depth images. A graph-based representation of the 3D point cloud data is determined which allows for the measurement of pose-independent geodesic distances on the surface of the human body. We extend previous approaches based on geodesic distances by extracting geodesic paths to multiple surface points which are obtained by adapting a 3D torso model to the point cloud data. This enables us to distinguish between the different body parts - without having to make prior assumptions about their locations. Subsequently, a kinematic skeleton model is adapted. Our method does not need any pre-trained pose classifiers and can therefore estimate arbitrary poses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Le Ly, D., Saxena, A., Lipson, H.: Pose estimation from a single depth image for arbitrary kinematic skeletons. CoRR (2011)

    Google Scholar 

  2. Jaeggli, T., Koller-Meier, E., Gool, L.: Learning generative models for multi-activity body pose estimation. Int. J. Comput. Vision 2, 121–134 (2009)

    Article  Google Scholar 

  3. Shotton, J., Girshick, R., Fitzgibbon, A., Sharp, T., Cook, M., Finocchio, M., Moore, R., Kohli, P., Criminisi, A., Kipman, A., Blake, A.: Efficient human pose estimation from single depth images. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(12), 2821–2840 (2013)

    Article  Google Scholar 

  4. Chang, J.Y., Nam, S.W.: Fast Random-Forest-Based Human Pose Estimation Using a Multi-scale and Cascade Approach 35(6) (2013)

    Google Scholar 

  5. Pons-Moll, G., Baak, A., Helten, T., Muller, M., Seidel, H.-P., Rosenhahn, B.: Multisensor-fusion for 3d full-body human motion capture. In: CVPR, pp. 663–670 (2010)

    Google Scholar 

  6. Chen, D.C.Y., Fookes, C.B.: Labelled silhouettes for human pose estimation. In: Int. C. on Inform. Science, Signal Proc. a their App. (2010)

    Google Scholar 

  7. Srinivasan, K., Porkumaran, K., Sainarayanan, G.: Skin colour segmentation based 2d and 3d human pose modelling using discrete wavelet transform. Pattern Recognit. Image Anal. 21(4), 740–753 (2011)

    Article  Google Scholar 

  8. Liang, Q., Miao, Z.: Markerless human pose estimation using image features and extremal contour. In: ISPACS, pp. 1–4 (2010)

    Google Scholar 

  9. Schwarz, L.A., Mkhitaryan, A., Mateus, D., Navab, N.: Human skeleton tracking from depth data using geodesic distances and optical flow. Image Vision Comput. 30(3), 217–226 (2012)

    Article  Google Scholar 

  10. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. of the Optical Society of America 4, 629–642 (1987)

    Article  Google Scholar 

  11. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  12. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 13(2), 260–269 (1967)

    Article  MATH  Google Scholar 

  13. Wang, L.-C.T., Chen, C.C.: A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. IEEE Transactions on Robotics and Automation 7(4), 489–499 (1991)

    Article  Google Scholar 

  14. Rther, M., Straka, M., Hauswiesner, S., Bischof, H.: Skeletal graph based human pose estimation in real-time, pp. 69.1–69.12 (2011). doi:10.5244/C.25.69

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Handrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Handrich, S., Al-Hamadi, A. (2015). Full-Body Human Pose Estimation by Combining Geodesic Distances and 3D-Point Cloud Registration. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer Science(), vol 9386. Springer, Cham. https://doi.org/10.1007/978-3-319-25903-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25903-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25902-4

  • Online ISBN: 978-3-319-25903-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics