Skip to main content

Kinematical Structure

  • Chapter
  • First Online:
Perturbative Algebraic Quantum Field Theory

Part of the book series: Mathematical Physics Studies ((MPST))

  • 2034 Accesses

Abstract

In the framework of perturbative algebraic quantum field theory (pAQFT) we start with the classical theory, which is subsequently quantized. We work in the Lagrangian framework, but there are some modifications that we need to make to deal with the infinite dimensional character of field theory. In this chapter we give an overview of mathematical structures that will be needed later on to construct models of classical and quantum field theories. Since we do not fix the dynamics yet, the content of this chapter describes the kinematical structure of our model. Readers familiar with some of the concepts we introduce here can skip corresponding sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We say that a subset \(\Gamma \) of \(\widetilde{\Omega }\times (\mathbb {R}^n\setminus \{0\})\) is a cone if \((x,\lambda k)\in \Gamma \) whenever \((x,k)\in \Gamma \), \(\lambda >0\). A cone is said to be closed (open) if it is closed (open) in \(\widetilde{\Omega }\times (\mathbb {R}^n\setminus \{0\})\).

  2. 2.

    This holds true, because \(\mathbb {C}\) is a field of characteristic 0.

References

  1. Bastiani, A.: Applications différentiables et variétés différentiables de dimension infinie. J. d’Analyse mathématique 13(1), 1–114 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buchwalter, H.: Produit topologique, produit tensoriel et \( c \)-replétion. Mémoires de la Société Mathématique de France 31, 51–71 (1972)

    MathSciNet  MATH  Google Scholar 

  3. Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorentzian manifolds and quantization. Eur. Math. Soc. (2007)

    Google Scholar 

  4. Bär, C., Fredenhagen, K.: Quantum field theory on curved spacetimes. Concepts and mathematical foundations. Lect. Notes Phys. 786 (2009)

    Google Scholar 

  5. Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory (2013). arXiv:math-ph/1306.1058

  6. Brouder, C., Dang, N., Laurent-Gengoux, C., Rejzner, K.: Functionals and their derivatives in quantum field theory, work in progress (2016)

    Google Scholar 

  7. Brunetti, R., Fredenhagen, K., Ribeiro, P.L.: Algebraic structure of classical field theory I: Kinematics and linearized dynamics for real scalar fields. arXiv:math-ph/1209.2148v2

  8. Hamilton, R.S.: The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982)

    Google Scholar 

  9. Hörmander, L.: The analysis of the linear partial differential operators I: Distribution theory and fourier analysis. Classics in Mathematics, Springer (2003)

    Google Scholar 

  10. Horvth, J.: Topological vector spaces and distributions, Courier Corporation (2012)

    Google Scholar 

  11. Jarchow, H.: Locally convex spaces, Springer Science and Business Media (2012)

    Google Scholar 

  12. Kriegl, A., Michor, P.W.: The convenient setting of global analysis. Math. Surv. Monogr. 53, AMS (1997)

    Google Scholar 

  13. Michal, A.D: Differential calculus in linear topological spaces. Proc. Natl. Acad. Sci. USA 24(8), 340–342 (1938)

    Google Scholar 

  14. Michal, A.D.: Differential of functions with arguments and values in topological abelian groups. Proc. Nat. Acad. Sci. USA 26, 356359 (1940)

    Article  MathSciNet  Google Scholar 

  15. Milnor, J.: Remarks on infinite-dimensional lie groups (1984)

    Google Scholar 

  16. Michor, P.W.: A convenient setting for differential geometry and global analysis I. II. Cahiers Topol. Geo. Diff 25, 63–109 (1984)

    MathSciNet  MATH  Google Scholar 

  17. Neeb, K.H.: Monastir summer school. Infinite-dimensional Lie groups, TU Darmstadt Preprint 2433 (2006)

    Google Scholar 

  18. Rejzner, K.: Fermionic fields in the functional approach to classical field theory. Rev. Math. Phys. 23(9), 1009–1033 (2011)

    Google Scholar 

  19. Rudin, W.: Functional analysis. International series in pure and applied mathematics (1991)

    Google Scholar 

  20. Sachse, C.: A categorical formulation of superalgebra and supergeometry. arXiv:0802.4067v1 [math.AG] (2008)

  21. Schwartz, L.: Théorie des distributions à valeurs vectorielles. I. Annales de l’Institut Fourier 7, 1–141 (1957)

    Article  MATH  Google Scholar 

  22. Schwartz, L.: Théorie des distributions à valeurs vectorielles. II. Annales de l’Institut Fourier 8, 1–209 (1958)

    Article  MATH  Google Scholar 

  23. Streater, R.F., Wightman, A.S.: PCT, spin and statistics, and all that, Princeton University Press (2000)

    Google Scholar 

  24. Trèves, T.: Topological vector spaces, distributions and kernels, vol. 25, Courier Corporation (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasia Rejzner .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Rejzner, K. (2016). Kinematical Structure. In: Perturbative Algebraic Quantum Field Theory. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-25901-7_3

Download citation

Publish with us

Policies and ethics