Skip to main content

Algebraic Approach to Quantum Theory

  • Chapter
  • First Online:
  • 2182 Accesses

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

Before entering the realm of the quantum theory of fields, let’s have a look at something simpler and better understood, namely quantum mechanics (QM). To prepare the ground for what follows, we will present an abstract formulation of QM and discuss how it relates to the more standard Dirac–von Neumann axioms (Dirac, The principles of quantum mechanics, 1930, [Dir30], Neumann, Mathematische grundlagen der quantenmechanik, 1932, [vN32]).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The completion of \(\mathcal {X}\) can be constructed as a set of equivalence classes of Cauchy sequences in \(\mathcal {X}\).

  2. 2.

    A net \(\{T_\alpha \}\) of operators on a Hilbert space \(\mathcal {H}\) converges strongly to an operator T if and only if \(||T_\alpha x-Tx||\rightarrow 0\) for all \(x\in \mathcal {H}\). The definition of a net is at p. 22 in Footnote 5.

  3. 3.

    As sharp localization is physically impossible, operationally we can think of \(A_t\) as the average over some interval \([t-\epsilon ,t+\epsilon ]\) centered at t, for a fixed value of \(\epsilon >0\).

  4. 4.

    An open cover \((V_\beta )_{\beta \in B}\) is a refinement of an open cover \((U_\alpha )_{\alpha \in A}\), if \(\forall \beta \in B\), \(\exists \alpha \) such that \(V_\beta \subseteq U_\alpha \).

  5. 5.

    A net in a topological space \(\mathcal {X}\) is a function from some directed set (nonempty set with a reflexive and transitive binary relation) A to \(\mathcal {X}\).

  6. 6.

    A set A of continuous functions between two topological spaces E and F is equicontinuous at the points \(x_0 \in E\) and \(y_0\in F\) if for any open set \(\mathcal {O}\) around \(y_0\), there are neighborhoods U of \(x_0\) and V of \(y_0\) such that for every \(f \in A\), if the intersection of f(U) and V is nonempty, then \(f(U) \subseteq \mathcal {O}\). One says that A is equicontinuous if it is equicontinuous for all points \(x_0\in E\), \(y_0\in F\). The notion of equicontinuity becomes more intuitive, if we choose E and F to be metric spaces. The family A is equicontinuous at a point \(x_0\) if for every \(\epsilon >0\), there exists a \(\delta > 0\) such that \(d(f(x_0), f(x)) < \epsilon \) for all \(f \in A\) and all x such that \(d(x_0, x) <\delta \). In other words we require all member of the family A to be continuous and to have equal variation over a given neighbourhood.

References

  1. Alazzawi, S.: Deformations of fermionic quantum field theories and integrable models. Lett. Math. Phys. 103(1), 37–58 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Araki, H.: Mathematical Theory of Quantum Fields, vol. 101. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  3. Araki, H., Shiraishi, M.: On quasifree states of the canonical commutation relations (I). Publ. Res. Inst. Math. Sci. 7(1), 105–120 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. European Mathematical Society, Zurich (2007)

    Book  MATH  Google Scholar 

  5. Bahns, D., Rejzner, K., Zahn, J.: The effective theory of strings. Commun. Math. Phys. 327(3), 779–814 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bernal, A.N., Sánchez, M.: On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243(3), 461–470 (2003)

    Article  ADS  MATH  Google Scholar 

  7. Becker, C., Schenkel, A., Szabo, R.J.: Differential cohomology and locally covariant quantum field theory (2014). arXiv:hep-th/1406.1514

  8. Bischoff, M., Tanimoto, Y.: Construction of wedge-local nets of observables through longo-witten endomorphisms. ii. Commun. Math. Phys. 317(3), 667–695 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Boas, F.-M.: Gauge theories in local causal perturbation theory. DESY-THESIS-1999-032. ISSN 1435–808, 1–84 (2000)

    Google Scholar 

  10. Bostelmann, H., Cadamuro, D.: An operator expansion for integrable quantum field theories. J. Phys. A: Math. Theor. 46(9), 095401 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 1. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  12. Bratteli, O., Robinson, D.W.: Operator Algebras and Statistical Mechanics, vol. 2. Springer, New York (1997)

    Book  MATH  Google Scholar 

  13. Brennecke, F., Dütsch, M.: Removal of violations of the master Ward identity in perturbative QFT. Rev. Math. Phys. 20(02), 119–151 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories. Commun. Math. Phys. 208(3), 623–661 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Brunetti, R., Fredenhagen, K.: Quantum Field Theory on Curved Backgrounds, pp. 129–155. Springer, Berlin (2009)

    Google Scholar 

  16. Brunetti, R., Fredenhagen, K.: Interacting quantum fields in curved space: renormalizability of \(\varphi ^4\), pp. 1–18. arXiv:gr-qc/9701048v1

  17. Brunetti, R., Fredenhagen, K., Köhler, M.: The microlocal spectrum condition and wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180(3), 633–652 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle-a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Brunetti, R., Dütsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory (2013). arXiv:math-ph/1306.1058

  21. Brunetti, R., Fredenhagen, K., Imani, P., Rejzner, K.: The locality axiom in quantum field theory and tensor products of \(C^*\)-algebras. Rev. Math. Phys. 26, 1450010 (2014). arXiv:math-ph/1206.5484

    Google Scholar 

  22. Buchholz, D., Størmer, E.: Superposition, transition probabilities and primitive observables in infinite quantum systems (2014). arXiv:1411.2100

  23. Dütsch, M., Fredenhagen, K.: Algebraic quantum field theory, perturbation theory, and the loop expansion. Commun. Math. Phys. 219(1), 5–30 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Dappiaggi, C., Lang, B.: Quantization of Maxwell’s equations on curved backgrounds and general local covariance. Lett. Math. Phys. 101(3), 265–287 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  26. Dütsch, M., Boas, F.-M.: The Master Ward Identity, pp. 1–73

    Google Scholar 

  27. Dütsch, M., Fredenhagen, K.: A local (perturbative) construction of observables in gauge theories: the example of QED (1998). arXiv:hep-th/9807078

  28. Dütsch, M., Fredenhagen, K.: Perturbative algebraic field theory, and deformation quantization. Math. Phys. Math. Phys.: Quantum Oper. Algebr. Asp. 30, 1–10 (2001)

    Google Scholar 

  29. Dütsch, M., Fredenhagen, K.: The master Ward identity and generalized Schwinger-Dyson equation in classical field theory. 243(2), 275–314 (2002). arXiv:hep-th/0211242

  30. Dütsch, M., Fredenhagen, K.: Causal perturbation theory in terms of retarded products, and a proof of the Action Ward Identity. Rev. Math. Phys. 16(10), 1291–1348 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dütsch, M., Fredenhagen, K.: Action Ward Identity and the Stückelberg-Petermann Renormalization Group. Progress in Mathematics. Birkhäuser Verlag, Basel (2007)

    Book  MATH  Google Scholar 

  32. Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219–228 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Dimock, J.: Quantized electromagnetic field on a manifold. Rev. Math. Phys. 4(02), 223–233 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dirac, P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (1930)

    MATH  Google Scholar 

  35. Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics I. Commun. Math. Phys. 23(3), 199–230 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  36. Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics II. Commun. Math. Phys. 35(1), 49–85 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  37. Dybalski, W., Gérard, C.: A criterion for asymptotic completeness in local relativistic QFT. Commun. Math. Phys. 332(3), 1167–1202 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Dybalski, W., Gérard, C.: Towards asymptotic completeness of two-particle scattering in local relativistic QFT. Commun. Math. Phys. 326(1), 81–109 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Dybalski, W., Tanimoto, Y.: Asymptotic completeness in a class of massless relativistic quantum field theories. Commun. Math. Phys. 305(2), 427–440 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Fewster, C.J.: Quantum energy inequalities and local covariance II: categorical formulation. Gen. Relativ. Gravit. 39(11), 1855–1890 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Fewster, C.J.: Endomorphisms and automorphisms of locally covariant quantum field theories. Rev. Math. Phys. 25(05), 1350008 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Fewster, C.J.: On the spin-statistics connection in curved spacetimes (2015). arXiv:math-ph/1503.05797

  43. Fewster, C.J., Verch, R.: Dynamical locality of the free scalar field (2011). arXiv:1109.6732

  44. Fewster, C.J., Verch, R.: Algebraic quantum field theory in curved spacetimes (2015). arXiv:1504.00586

    Google Scholar 

  45. Fewster, C.J., Verch, R.: Dynamical locality and covariance: what makes a physical theory the same in all spacetimes? pp. 1–57

    Google Scholar 

  46. Fredenhagen, K.: Advanced Quantum Field Theory, Lecture Notes

    Google Scholar 

  47. Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317(3), 697–725 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in the functional approach to classical field theory. Commun. Math. Phys. 314(1), 93–127 (2012) (Ph.D. thesis). arXiv:math-ph/1101.5112v5

    Google Scholar 

  49. Gelfand, I.M., Neumark, M.A.: On the imbedding of normed rings into the ring of operators in Hilbert space. Matematiceskij sbornik 54(2), 197–217 (1943)

    MathSciNet  MATH  Google Scholar 

  50. Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Séminaire Bourbaki 2, 193–200 (1955)

    Google Scholar 

  51. Haag, R.: Quantum field theories with composite particles and asymptotic conditions. Phys. Rev. 112(2), 669 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Haag, R.: Local Quantum Physics. Springer, Berlin (1993)

    MATH  Google Scholar 

  53. Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5(7), 848–861 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033–1172 (2008). arXiv:gr-qc/705.3340v3

    Google Scholar 

  55. Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223(2), 289–326 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231(2), 309–345 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Hollands, S., Wald, R.M.: On the renormalization group in curved spacetime. Commun. Math. Phys. 237, 123–160 (2002). arXiv:gr-qc/0209029

    Google Scholar 

  58. Hollands, S., Wald, R.M.: Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17(03), 227–311 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  59. Jordan, P.: Über Verallgemeinerungsmöglichkeiten des Formalismus der Quantenmechanik. Weidmann (1933)

    Google Scholar 

  60. Jordan, P., von Neumann, J., Wigner, E.P.: On an algebraic generalization of the quantum mechanical formalism. Ann. Math. 35, 29–64 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  61. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  62. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras: Elementary Theory. Academic Press, New York (1983)

    MATH  Google Scholar 

  63. Kay, B.S.: Linear spin-zero quantum fields in external gravitational and scalar fields. Commun. Math. Phys. 62(1), 55–70 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  64. Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon. Phys. Rep. 207(2), 49–136 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Köthe, G.: Topological vector spaces I, grundlehren der mathematischen wissenchaften, vol. 159. Springer, Berlin (1969)

    Google Scholar 

  66. Lechner, G.: Construction of quantum field theories with factorizing s-matrices. Commun. Math. Phys. 277(3), 821–860 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Mac Lane, S.: Categories for the Working Mathematician, Springer Science and Business Media, vol. 5. Berlin (1978)

    Google Scholar 

  68. Moretti, V.: Spectral Theory and Quantum Mechanics: With an Introduction to the Algebraic Formulation. Springer Science and Business Media, vol. 64. Springer, Milan (2013)

    Google Scholar 

  69. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Functional Analysis, vol. 1. Gulf Professional Publishing, Houston (1980)

    MATH  Google Scholar 

  70. Reeh, H., Schlieder, S.: Bemerkungen zur Unitäräquivalenz von lorentzinvarianten Feldern. Il Nuovo Cimento 22(5), 1051–1068 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  71. Rejzner, K.: Batalin-Vilkovisky formalism in locally covariant field theory. Ph.D. thesis (2011). arXiv:math-ph:1111.5130v1

  72. Rejzner, K.: Fermionic fields in the functional approach to classical field theory. Rev. Math. Phys. 23(9), 1009–1033 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  73. Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  74. Ruelle, D.: On the asymptotic condition in quantum field theory. Helv. Phys. Acta 35, 147 (1962)

    MathSciNet  MATH  Google Scholar 

  75. Sanders, K., Dappiaggi, C., Hack, T.-P.: Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss’ law. Commun. Math. Phys. 328(2), 625–667 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Schwartz, L.: Théorie des distributions à valeurs vectorielles. I. Annales de l’Institut Fourier 7, 1–141 (1957)

    Article  MATH  Google Scholar 

  77. Schwartz, L.: Théorie des distributions à valeurs vectorielles. II. Annales de l’Institut Fourier 8, 1–209 (1958)

    Article  MATH  Google Scholar 

  78. Segal, G.: Two dimensional conformal field theory and modular functors. In: IX International Congress of Mathematical Physics, pp. 22–37. Hilger, Bristol (1989)

    Google Scholar 

  79. Segal, I.E.: Irreducible representations of operator algebras. Bull. Am. Math. Soc. 53(2), 73–88 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  80. Segal, I.E.: Postulates for general quantum mechanics. Ann. Math. 48, 930–948 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  81. Stone, M.H.: Linear transformations in Hilbert space: III. Operational methods and group theory. Proc. Natl. Acad. Sci. USA 16(2), 172 (1930)

    Article  ADS  MATH  Google Scholar 

  82. Strocchi, F.: An Introduction to the Mathematical Structure of Quantum Mechanics: A Short Course for Mathematicians, vol. 28. World Scientific, New Jersey (2008)

    Google Scholar 

  83. Tanimoto, Y.: Construction of wedge-local nets of observables through Longo-Witten endomorphisms. Commun. Math. Phys. 314(2), 443–469 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. von Neumann, J.: Mathematische grundlagen der quantenmechanik. Springer, New York (1932)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasia Rejzner .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Rejzner, K. (2016). Algebraic Approach to Quantum Theory. In: Perturbative Algebraic Quantum Field Theory. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-25901-7_2

Download citation

Publish with us

Policies and ethics