Skip to main content

Activation of Chemical Substrates in Green Chemistry

  • Chapter
  • First Online:
Paradigms in Green Chemistry and Technology

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

The stability and low polarization of organic molecules forces to use an aggressive chemical or heat to activate (one of) the reagent(s). Addition of an activator worsens the atom economy since spent reagents add to the waste, drastic conditions increase the energetic expenditure. Homogeneous and heterogeneous catalysis, phase transfer catalysis, bio- and photocatalysis, microwave activation, the use of non conventional solvents (supercritical solvents, ionic liquids) or solventless reactions are the means for obtaining a much more environment-friendly process. The application of such methods to various chemical processes is briefly reviewed according to the chemical transformation involved (redox processes, carbon-heteroatom and carbon-carbon bond forming processes), with regards both to commodities and fine chemistry products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This does not mean that transition metal catalysis has no role in green synthesis. To the contrary, green processes of this type have been reported (although the topic is barely mentioned here for brevity), but trace of metals have to be carefully eliminated, particularly for products used as drugs. See for example: Buchwald SL (2008) Cross coupling. Acc Chem Res. 41: 1439. Liu S, Xiao J (2007) Toward green catalytic synthesis-transition metal-catalyzed reactions in non-conventional media. J Mol Cat A: Chemistry. 270:1–43. Parmeggiani C, Cardona F (2012) Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chem. 14: 547–564.

References

  1. Albini A, Fagnoni M (2008) 1908 Giacomo Ciamician and the concept of green chemistry. ChemSusChem 1:63–66

    Google Scholar 

  2. Lancaster M (2010) Green chemistry: an introductory text. Royal Chemical Society, London

    Google Scholar 

  3. Hoelderich WF (2000) Environmentally benign manufacturing of fine and intermediate chemicals. Cat Today 62:115–130

    Article  CAS  Google Scholar 

  4. For review on the contribution of catalysis to green chemistry see: (a) Anastas PT, Kirchhoff MM, Williamson TC (2001) Catalysis as a foundational pillar of green chemistry. Appl Cat A 221:3–13. (b) Anastas PT, Bartlett LB, Kirchhoff MM, Williamson TC (2000) The role of catalysis in the design, development, and implementation of green chemistry. Cat Today 55:11–22. Sheldon R, Arends IWCE, Hanefeld U (2007) Green Chemistry and Catalysis. Wiley VCH, Germany

    Google Scholar 

  5. Sheldon RA (1997) Catalysis: the key to waste minimization. J Chem Tech Biotechnol 68:381–388

    Article  CAS  Google Scholar 

  6. Sheldon RA (1999) Downing heterogeneous catalytic transformations for environmentally friendly production. Appl Catal A 189:163–183

    Article  CAS  Google Scholar 

  7. See for reviews Climent MJ, Corma A, Iborra S (2011) Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem Rev 111:1072–1133. Hattori, H (2001) Solid base catalysts: generation of basic sites and application to organic synthesis. Appl Cat A: General 222:247–259

    Google Scholar 

  8. Pollet P, Hart RJ, Eckert C A, Liotta CL (2010) Organic aqueous tunable solvents (OATS): a vehicle for coupling reactions and separations. Acc Chem Res 43:1237–1245

    Google Scholar 

  9. Vincent JM (2012) Fluorous catalysis: from the origin to recent advances. Topics Curr Chem 308:153–174

    Article  CAS  Google Scholar 

  10. Dyson PJ (2004) Biphasic synthesis. In McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 1, pp 689–695

    Google Scholar 

  11. Nelson A (1999) Asymmetric phase-transfer catalysis. Angew Chem Int Ed 38:1583–1585. Shirakawa S, Maruoka K (2013) Recent developments in asymmetric phase-transfer reactions. Angew Chem Int Ed 52:4312–4348

    Google Scholar 

  12. Peach J, Eastoe J (2014) Supercritical carbon dioxide: a solvent like no other. Beilstein J Org Chem 10:1878–1895

    Article  CAS  Google Scholar 

  13. Jindal R, Sablok A (2015) Preparation and applications of room temperature ionic liquids in organic synthesis: a review on recent efforts. Curr Green Chem 2:135–155

    Article  CAS  Google Scholar 

  14. Ran N, Zhao L, Chen Z, Tao J (2008) Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green Chem 10:361–372. Gupta P,  Mahajan A (2015) Green chemistry approaches as sustainable alternatives to conventional strategies in the pharmaceutical industry. RSC Adv 5:26686–26705

    Google Scholar 

  15. See for reviews Wohlgemuth R (2010) Biocatalysis-key to sustainable industrial chemistry. Curr Opin Biotech 21:713–724; Tao J, Xu J-H (2009) Biocatalysis in development of green pharmaceutical processes. Curr Opin Chem Biol 13:43–50. Ran N, Zhao L (eds) (2011) Biocatalysis for green chemistry and chemical processes development. Wiley, Hoboken, New Jersey. Patel RN (2013) Biocatalytic synthesis of chiral alcohols and amino acids for development of pharmaceuticals. Biomolecules 3:741–777

    Google Scholar 

  16. (a) Nüchter M, Müller U, Ondruschka B, Tied A, Lautenschläger W (2003) Microwave assisted synthesis. A critical technology overview. Chem Eng Technol 26:1207–1216 (b) Lidström P, Tieney J, Wathey B, Westmann J (2001) Microwave organic synthesis. A review. Tetrahedron 57:9225–9283. (c) Polshettiwar V, Varma RS (2008) Aqueous microwave chemistry: a clean and green synthetic tool for rapid drug discovery. Chem Soc Rev 37:1546–1557. (d) Gronnow MJ, White RJ, Clark JH, Macquarrie DJ (2005) Energy efficiency in chemical reactions: a comparative study of different reaction techniques. Org Proc Res Dev 9:516–518. (e) Roberts BA, Strauss CR (2005) Toward rapid, “green”, predictable microwave-assisted synthesis. Acc Chem Res 38:653–661

    Google Scholar 

  17. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21. Protti S, Albini A Serpone N (2014) Photocatalytic generation of solar fuels from the reduction of H2O and CO2: a look at the patent literature. Phys Chem Chem Phys 16:19790–19827

    Google Scholar 

  18. Ravelli D, Dondi D, Fagnoni M, Albini A (2009) Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev 38:1999–2011

    Article  CAS  Google Scholar 

  19. Sato K, Aoki M, Noyori R (1998) A “green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 281:1646–1647

    Article  CAS  Google Scholar 

  20. Noyori R, Aoki M, Sato, K (2003) Green oxidation with aqueous hydrogen peroxide. Chem Commun 16:1977–1986

    Google Scholar 

  21. Kinen CO, Rossi LI, de Rossi RH (2009) The development of an environmentally benign sulfide oxidation procedure and its assessment by green chemistry metrics. Green Chem 11:223–228

    Article  CAS  Google Scholar 

  22. Taramasso M, Perego G, Notari B (1984) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US Patent 4410501 A

    Google Scholar 

  23. Thiele GF, Roland E (1997) Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst: activity, deactivation and regeneration of the catalyst. J Mol Cat A: Chem 117:351–356

    Article  CAS  Google Scholar 

  24. Schenck GO, Ziegler (1944) Die Synthese des Ascaridols. Naturwissenschaft 32:157

    Google Scholar 

  25. Schenk GO, Ohloff G, Klein E (1968) Mixtures of oxygenated acyclic terpenes. US Patent 3,382,276

    Google Scholar 

  26. Ravelli D, Protti S, Neri P, Fagnoni M, Albini A (2011) Photochemical technologies assessed: the case of rose oxide. Green Chem 13:1876–1884

    Article  CAS  Google Scholar 

  27. Varma RS (1997) The presidential green chemistry challenge awards program, summary of 1997 award entries and recipients, EPA744-S-97-001. U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, p 9

    Google Scholar 

  28. Pharmacia & Upjohn, An alternative synthesis of bisnoraldehyde, an intermediate to progesterone and corticosteroids. In: The presidential green chemistry challenge awards program summary of 1996 award. Entries and recipients. http://www2.epa.gov/sites/production/files/documents/award_entries_and_recipients1996.pdf. Last access 14 Jan 2015

  29. Haggiage E, Coyle EE, Joyce K, Oelgemoeller M (2009) Green photochemistry: solar chemical synthesis of 5-amido-1,4-naphthoquinones. Green Chem 11:318–321

    Article  CAS  Google Scholar 

  30. Le Bars J, Dakka J, Sheldon RA (1996) Ammoximation of cyclohexanone and hydroxyaromatic ketones over titanium molecular sieves. Appl Catal A: General 136:69–80

    Article  Google Scholar 

  31. Sheldon RA (2000) Atom efficiency and catalysis in organic synthesis. Pure Appl Chem 72:1233–1246

    Article  CAS  Google Scholar 

  32. Stewart JD, Reed KW, Martinez CA, Zhu J, Chen G, Kayser MM (1998) Recombinant baker’s yeast as a whole-cell catalyst for asymmetric Baeyer–Villiger oxidations. J Am Chem Soc 120:3541–3547

    Article  CAS  Google Scholar 

  33. Kohlmann C, Leuchs S, Greiner L, Leitner W (2011) Continuous biocatalytic synthesis of (R)-2-octanol with integrated product separation. Green Chem 13:1430–1436

    Article  CAS  Google Scholar 

  34. Wu X, Wang J, Chen C, Liu N, Chen Y (2009) Enantioselective synthesis of ethyl (S)-2-hydroxy-4-phenylbutyrate by recombinant diketoreductase. Tetrahedron Asymmetry 20:2504–2509

    Article  CAS  Google Scholar 

  35. Easwar S, Argade NP (2003) Amano PS-catalysed enantioselective acylation of (±)-α-methyl-1,3-benzodioxole-5-ethanol: an efficient resolution of chiral intermediates of the remarkable antiepileptic drug candidate, (−)-talampanel Tetrahedron Asym 14:333–337 (c) Nakamura K, Yamanaka R, Matsuda T, Harada T (2003) Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymm 14:2659–2681

    Google Scholar 

  36. Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309

    Article  CAS  Google Scholar 

  37. Hansen KB, Hsiao Y, Xu F, Rivera N, Clausen A, Kubryk M, Krska S, Rosner T, Simmons B, Balsells J, Ikemoto N, Sun Y, Spindler F, Malan C, Grabowski EJJ, Armstrong JD III (2009) Highly efficient asymmetric synthesis of sitagliptin. J Am Chem Soc 131:8796–8804

    Google Scholar 

  38. (a) Adams JP, Alder CM, Andrews I, Bullion AM, Campbell-Crawford M, Darcy MG, Hayler JD, Henderson RK, Oare CA, Pendrak I, Redman AM, Shuster LE, Sneddon HF, Walker MD (2013) Development of GSK’s reagent guides—embedding sustainability into reagent selection. Green Chem 15:1542–1549. An analogous scale has been compiled for the choice of solvents (see Fig 2 in Ch 5). (b) Clark JH (2002) Solid acids for green chemistry. Acc Chem Res 35:791–797

    Google Scholar 

  39. Comerford JW, Clark JH, Macquarrie DJ, Breeden SW (2009) Clean, reusable and low cost heterogeneous catalyst for amide synthesis. Chem Comm 18:2562–2564

    Google Scholar 

  40. Caldwell N, Jamieson C, Simpson I, Watson AJB (2013) Development of a sustainable catalytic ester amidation process. ACS Sustain Chem Eng 1:1339–1344

    Article  CAS  Google Scholar 

  41. Das VK, Devib RR, Thakur AJ (2013) Recyclable, highly efficient and low cost nano-MgO for amide synthesis under SFRC: a convenient and greener ‘NOSE’ approach. Appl Cat A: Gen 456:118–125

    Article  CAS  Google Scholar 

  42. Verweij J, de Vroom E (1993) Industrial transformations of penicillins and cephalosporins. Recl Trav Chim Pays-Bas 112:66–81

    Article  CAS  Google Scholar 

  43. Bruggink A, Roos EC, de Vroom E (1998) Penicillin acylase in the industrial production of β-lactam antibiotics. Org Proc Res Dev 2:128–133

    Article  CAS  Google Scholar 

  44. Arroyo M, de la Mata I, Acebal C, Castillón MP (2003) Biotechnological applications of penicillin acylases: state-of-the-art. Appl Microbiol Biotechnol 60:507–514. Youshko MI, van Langen LM, de Vroom E, van Rantwijk F, Sheldon RA, Svedas, VK (2001) Highly efficient synthesis of ampicillin in an “Aqueous Solution-Precipitate” system: repetitive addition of substrates in a semicontinuous process. Biotech Bioengin 73:426–430. Wegman MA, Janssen MHA, van Rantwijk F, Sheldon RA (2001) Towards biocatalytic synthesis of ß-lactam antibiotics. Adv Synth Catal 343:559–576

    Google Scholar 

  45. Hölderich WH, Dahlhoff G, Ichihashi H, Sugita K (2003) Method for producing ε-caprolactam and reactor for the method. US Patent 6531595 B2

    Google Scholar 

  46. Barnard TM, Vanier GS, Collins MJ Jr (2006) Scale-up of the green synthesis of azacycloalkanes and isoindolines under microwave irradiation. Org Proc Res Dev 10:1233–1237

    Article  CAS  Google Scholar 

  47. Ryu I, Tani A, Fukuyama T, Ravelli R, Montanaro S, Fagnoni (2013) Efficient C–H/C–N and C–H/C–CO–N conversion via decatungstate-photoinduced alkylation of diisopropyl azodicarboxylate. Org Lett 15:2554–2557

    Google Scholar 

  48. Paravidino M, Hanefeld U (2011) Enzymatic acylation: assessing the greenness of different acyl donors. Green Chem 13:2651–2657

    Article  CAS  Google Scholar 

  49. Cabrera Z, Fernandez-Lorente G, Fernandez-Lafuente R, Palomo JM, Guisan JM (2009) Enhancement of Novozym-435 catalytic properties by physical or chemical modification. Process Biochem 44:226–231

    Article  CAS  Google Scholar 

  50. Korupp C, Weberskirch R, Muller JJ, Liese A, Hilterhaus L (2010) Scale-up of lipase-catalyzed polyester synthesis. Org Process Res Dev 14:1118–1124

    Article  CAS  Google Scholar 

  51. Andraos JA (2012) Green metrics assessment of phosgene and phosgene-free syntheses of industrially important commodity chemicals. Pure Appl Chem 84:827–860

    CAS  Google Scholar 

  52. Tundo P, Selva M, Marques CA (1996). In: Anastas PT, Williamson TC (eds) Green chemistry: designing chemistry for the environment, Ch. 7. American Chemical Society, Washington, DC, p 81

    Google Scholar 

  53. Cooke M, Clark J, Breeden S (2009) Lewis acid catalysed microwave-assisted synthesis of diaryl sulfones and comparison of associated carbon dioxide emissions. J Mol Catalysis A: Chem 103:132–136

    Article  Google Scholar 

  54. Armor JN (1992) Environmental catalysis. Appl Catal B: Environ 1:221–256

    Article  CAS  Google Scholar 

  55. Davis ME (1993) New vistas in zeolite and molecular sieve catalysis. Acc Chem Res 26:111–115

    Article  CAS  Google Scholar 

  56. See for example Fong YY, Abdullah AZ, Ahmad AL, Bhatia S (2008) Development of functionalized zeolite membrane and its potential role as reactor combined separator for para-xylene production from xylene isomers. Chem Eng J 139:172–193

    Google Scholar 

  57. Hoefnagel AJ, van Bekkum H (1993) Direct Fries reaction of resorcinol with benzoic acids catalyzed by zeolite H-beta. Appl Catal A: Gen 97:87–102

    Google Scholar 

  58. Yadav GD, Kamble SB (2009) Synthesis of carvacrol by Friedel–Crafts alkylation of o-cresol with isopropanol using superacidic catalyst UDCaT-5. J Chem Technol Biotechnol 84:1499–1508

    Article  CAS  Google Scholar 

  59. Yadav GD, Kamble SB (2012) Atom efficient Friedel–Crafts acylation of toluene with propionic anhydride over solid mesoporous superacid UDCaT-5. Appl Cat A: Gen 433–434:265–274

    Article  Google Scholar 

  60. Ishihara K, Kubota M, Kurihara H, Yamamoto H (1996) Scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides. J Org Chem 61:4560–4567

    Article  CAS  Google Scholar 

  61. Korea R, Srivastava R, Satpatib B (2015) Synthesis of industrially important aromatic and heterocyclic ketones using hierarchical ZSM-5 and beta zeolites. Appl Catal A: Gen 493:129–141

    Article  Google Scholar 

  62. Chaube VD, Moreau P, Finiels A, Ramaswamy AV, Singh AP (2002) A novel single step selective synthesis of 4-hydroxybenzophenone (4-HBP) using zeolite H-beta. Cat Lett 79:89–94

    Article  CAS  Google Scholar 

  63. See for reviews: Farrusseng D, Aguado S, Pinel C (2009) Metal-organic frameworks: opportunities for catalysis. Angew Chem Int Ed 48:7502–7513. Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    Google Scholar 

  64. Shi T, Guo Z, Yu H, Xie J, Zhong Y, Zhua W (2013) Atom-economic synthesis of optically active warfarin anticoagulant over a chiral MOF organocatalyst. Adv Synth Cat 355:2538–2543

    Article  CAS  Google Scholar 

  65. Climent MJ, Corma A, Iborra S, Mifsud M, Velty A (2010) New one-pot multistep process with multifunctional catalysts: decreasing the E-factor in the synthesis of fine chemicals. Green Chem 12:99–107

    Article  CAS  Google Scholar 

  66. For other examples related to the use of multifunctional catalysts see Climent MJ, Corma A, Iborra S, Sabater MJ (2014) Heterogeneous catalysis for tandem reactions. ACS Catal 4:870–891

    Google Scholar 

  67. Tanabea K, Hoelderich WF (1999) Industrial application of solid acid-base catalysts. Appl Catal A: Gen 181:399–434

    Article  Google Scholar 

  68. Palmieri A, Gabrielli S, Ballini R (2013) Low impact synthesis of β-nitroacrylates under fully heterogeneous conditions. Green Chem 15:2344–2348

    Google Scholar 

  69. Fringuelli D, Lanari D, Pizzo F, Vaccaro L (2010) An E-factor minimized protocol for the preparation of methyl β-hydroxy esters. Green Chem 12:1301–1305

    Article  CAS  Google Scholar 

  70. Kobayashi S, Manabe K (2000) Green Lewis acid catalysis in organic synthesis. Pure Appl Chem 72:1373–1380. Kobayashi S, Manabe K (2002) Development of novel Lewis acid catalysts for selective organic reactions in aqueous media. Acc Chem Res 35:209–217

    Google Scholar 

  71. Kobayashi S, Hachiya I (1994) Lanthanide triflates as water-tolerant Lewis acids activation of commercial formaldehyde solution and use in the aldol reaction of silyl enol ethers with aldehydes in aqueous media. J Org Chem 59:3590–3596

    Article  CAS  Google Scholar 

  72. Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching L, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW (2007) Improving catalytic function by ProSAR-driven enzyme evolution. Nat Biotech 25:338–344

    Article  CAS  Google Scholar 

  73. Das VK, Borah M, Thakur AJ (2013) Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener “nanoparticle-catalyzed organic synthesis enhancement” approach. J Org Chem 78:3361–3366

    Article  CAS  Google Scholar 

  74. Hendricks JD, Mott GN (1992) Method for producing ibuprofen. Hoechst Celansese Corporation, US Patent 5 166 418. Process for the carbonylation of 1-(4-isobutylphenyl) ethanol in the presence of ibuprofen. Eur Patent Appl, EP 460 905, 1991, Chem Abstr, 116 (1992) 83378

    Google Scholar 

  75. Qiu Z, He Y, Zheng D, Liu F (2005) Study on the synthesis of phenylacetic acid by carbonylation of benzyl chloride under normal pressure. J Nat Gas Chem 14:40–46. See also Cornils D, Herrmann WA (eds) (2006) Aqueous-phase organometallic catalysis: concepts and applications. Wiley VCH, Germany

    Google Scholar 

  76. Evans D, Osborn JA, Wilkinson G (1968) Hydroformylation of alkenes by use of rhodium complex catalysts. J Chem Soc A 3133–3142

    Google Scholar 

  77. Bohnen HW, Cornils B (2002) Hydroformylation of alkenes: an industrial view of the status and importance. Adv Catal 47:1–64. Cornils B (1998) Industrial aqueous biphasic catalysis: status and directions. Org Proc Res Dev 2:121–127

    Google Scholar 

  78. Horvàth I (1998) Fluorous biphase chemistry. Acc Chem Res 31:641–650

    Article  Google Scholar 

  79. Perperi E, Huang Y, Angeli P, Manos C, Mathison CR, Cole-Hamilton DJ, Adams DJ, Hope EG (2004) The design of a continuous reactor for fluorous biphasic reactions under pressure and its use in alkene hydroformylation. Dalton Trans 14:2062–2064. Adams DJ, Bennett JA, Cole-Hamilton DJ, Hope DJ, Hopewell J, Kight J, Pogorzelec P, Stuart AM (2005) Rhodium catalyzed hydroformylation of alkenes using highly fluorophilic phosphines. Dalton Trans 24:3862–3867. Bach I, Cole-Hamilton DJ (1998) Hydroformylation of hex-1-ene in supercritical carbon dioxide catalyzed by rhodium trialkylphosphine complexes. Chem Commun 14:1463–1464

    Google Scholar 

  80. Webb PW, Kunene TE, Cole-Hamilton DJ (2005) Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids. Green Chem 7:373–379

    Article  CAS  Google Scholar 

  81. Sellin MF, Bach I, Webster JM, Montilla F, Rosa V, Avilés T, Poliakoff M, Cole-Hamilton DJ (2002) Hydroformylation of alkenes in supercritical carbon dioxide catalysed by rhodium trialkylphosphine complexes. J Chem Soc Dalton Trans 4569–4576

    Google Scholar 

  82. Chauvin Y, Mussmann L, Olivier H (1995) A novel class of versatile solvents for two-phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazolium salts. Angew Chem Int Ed Eng 34:2698–2700

    Article  CAS  Google Scholar 

  83. Webb PB, Sellin MF, Kunene TE, Williamson S, Slawin AMZ, Cole-Hamilton DJ (2003) Continuous flow hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic systems. J Am Chem Soc 125:15577–15588

    Article  CAS  Google Scholar 

  84. Kulkarni A, Torok B (2010) Microwave-assisted multicomponent domino cyclization–aromatization: an efficient approach for the synthesis of substituted quinolones. Green Chem 12:875–878

    Article  CAS  Google Scholar 

  85. Corradi A, Leonelli C, Rizzuti A, Rosa R, Veronesi P, Grandi R, Baldassari S, Villa C (2007) New “green” approaches to the synthesis of pyrazole derivatives. Molecules 12:1482–1495

    Article  CAS  Google Scholar 

  86. Martins MAP, Beck PH, Buriol L, Frizzo CP, Moreira DN, Marzari MRB, Zanatta M, Machado P, Zanatta N, Bonacorso HG (2013) Evaluation of the synthesis of 1-(pentafluorophenyl)-4,5-dihydro-1H-pyrazoles using green metrics. Monatsh Chem 144:1043–1050

    Article  CAS  Google Scholar 

  87. Henriques CA, Pinto SMA, Aquino GLB, Pineiro M, Calvete MJF, Pereira MM (2014) Ecofriendly porphyrin synthesis by using water under microwave irradiation. Chem Sus Chem 7:2821–2824

    Article  CAS  Google Scholar 

  88. (a) Hook BDA, Dohle WP, Hirst R, Pickworth M, Berry MB, Booker–Milburn KI (2005) A practical flow reactor for continuous organic photochemistry. J Org Chem 70:7558–7564. (b) Knowles JP, Elliott LD, Booker–Milburn KI (2012) Flow photochemistry: old light through new windows. Beilstein J Org Chem 8:2025–2052

    Google Scholar 

  89. (a) Yoon TP, Ischay M, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:527–532. (b) Ischay MA, Ament MS, Yoon TP (2012) Crossed intermolecular [2 + 2] cycloaddition of styrenes by visible light photocatalysis. Chem Sci 3:2807–2811

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Albini .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Albini, A., Protti, S. (2016). Activation of Chemical Substrates in Green Chemistry. In: Paradigms in Green Chemistry and Technology. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-25895-9_3

Download citation

Publish with us

Policies and ethics