Skip to main content

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 566 Accesses

Abstract

In this chapter we study the problem of distributed localization, which consists of establishing a common frame and computing the robots’ localization relative to this frame. Each robot is capable of measuring the relative pose of its neighboring robots. However, it does not know the poses of far robots, and it can only exchange data with neighbors using the range-limited communication network. The analyzed algorithms have the interesting property that can be executed in a distributed fashion. They allow each robot to recover localization using exclusively local information and local interactions with its neighbors. Besides, they only require each robot to maintain an estimate of its own pose. Thus, the memory load of the algorithm is low compared to methods where each robot must also estimate the poses of any other robot. We analyze two different scenarios and study distributed algorithms for them. In the first scenario each robot measures the noisy planar position and orientation of nearby robots to estimate its own full localization with respect to an anchor node. In the second case, robots take noisy measurements of the relative three-dimensional positions of their neighbors, which is used to estimate their three-dimensional positions with respect to the simultaneously computed centroid reference. When the centroid of the team is selected as common frame, the estimates are more precise than with any anchor selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(A \succ B\) (\(A \succeq B\)) represent that matrix \(A-B\) is positive-definite (positive-semidefinite). Equivalently, \(\prec \), \(\preceq \) are used for negative-definite and negative-semidefinite matrices.

  2. 2.

    The block-trace of a matrix defined by blocks \(P=[P_{ij}]\) with \(i,j\in \{1,\dots ,n\}\) is the sum of its diagonal blocks, \(\mathrm {blkTr}(P)=\mathop {\sum }_{i=1}^n P_{ii}\).

References

  1. B.D.O. Anderson, I. Shames, G. Mao, B. Fidan, Formal theory of noisy sensor network localization. SIAM J. Discret. Math. 24(2), 684–698 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Aragues, L. Carlone, G. Calafiore, C. Sagues, Multi agent localization from noisy relative pose measurements, in IEEE International Conference on Robotics and Automation , Shanghai, China, May 2011, pp. 364–369

    Google Scholar 

  3. R. Aragues, L. Carlone, C. Sagues, G. Calafiore, Distributed centroid estimation from noisy relative measurements. Syst. Control Lett. 61(1), 773–779 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Barooah, J. Hespanha, Distributed estimation from relative measurements in sensor networks, in International Conference on Intelligent Sensing and Information Processing, Chennai, India, January 2005, pp. 88–93

    Google Scholar 

  5. P. Barooah, J. Hespanha, Estimation on graphs from relative measurements. IEEE Control Syst. Mag. 27(4), 57–74 (2007)

    Article  Google Scholar 

  6. P. Barooah, J. Hespanha, Error scaling laws for linear optimal estimation from relative measurements. IEEE Trans. Inf. Theory 55(12), 5661–5673 (2009)

    Article  MathSciNet  Google Scholar 

  7. D.J. Bennet, C.R. McInnes, Distributed control of multi-robot systems using bifurcating potential fields. Robot. Auton. Syst. 58(3), 256–264 (2010)

    Article  Google Scholar 

  8. D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods (Athena Scientific, 1997)

    Google Scholar 

  9. F. Bullo, J. Cortes, S. Martinez, Distributed Control of Robotic Networks. Applied Mathematics Series (Princeton University Press, 2009). Electronically availableat http://coordinationbook.info

  10. G. Calafiore, L. Carlone, M. Wei, A distributed gauss-newton approach for range-based localization of multi agent formations, in IEEE Multi-Conference on Systems and Control, Yokohama, Japan, September 2010, pp. 1152–1157

    Google Scholar 

  11. G. Calafiore, L. Carlone, M. Wei, A distributed gradient method for localization of formations using relative range measurements, in IEEE Multi-Conference on Systems and Control, Yokohama, Japan, September 2010, pp. 1146–1151

    Google Scholar 

  12. L. Carlone, R. Aragues, J.A. Castellanos, B. Bona, A first-order solution to simultaneous localization and mapping with graphical models, in IEEE International Conference on Robotics and Automation, Shanghai, China, May 2011, pp. 1764–1771

    Google Scholar 

  13. L. Carlone, R. Aragues, J.A. Castellanos, B. Bona, A linear approximation for graphbased simultaneous localization and mapping, in Robotics: Science and Systems, Los Angeles, CA, USA, June 2011

    Google Scholar 

  14. S. Carpin, Fast and accurate map merging for multi-robot systems. Auton. Robot. 25(3), 305–316 (2008)

    Article  Google Scholar 

  15. S. Carpin, A. Birk, V. Jucikas, On map merging. Robot. Auton. Syst. 53(1), 1–14 (2005)

    Article  Google Scholar 

  16. J. Cortes, Global and robust formation-shape stabilization of relative sensing networks. Automatica 45(12), 2754–2762 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Elsner, V. Mehrmann, Convergence of block iterative methods for linear systems arising in the numerical solution of Euler equations. Numerische Mathematik 59(1), 541–559 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. J.A. Fax, R.M. Murray, Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  19. M. Franceschelli, A. Gasparri, On agreement problems with gossip algorithms in absence of common reference frames, in IEEE International Conference on Robotics and Automation, Anchorage, USA, May 2010, pp. 4481–4486

    Google Scholar 

  20. J.J. Guerrero, A.C. Murillo, C. Sagues, Localization and matching using the planar trifocal tensor with bearing-only data. IEEE Trans. Robot. 24(2), 494–501 (2008)

    Article  Google Scholar 

  21. M. Ji, M. Egerstedt, Distributed coordination control of multiagent systems while preserving connectedness. IEEE Trans. Robot. 23(4), 693–703 (2007)

    Article  Google Scholar 

  22. J. Knuth, P. Barooah, Distributed collaborative localization of multiple vehicles from relative pose measurements, in Allerton Conference on Communications, Controland Computing, Urbana-Champaign, USA, October 2009, pp. 314–321

    Google Scholar 

  23. L. Kolotilina, Bounds for eigenvalues of symmetric block Jacobi scaled matrices. J. Math. Sci. 79(3), 1043–1047 (1996)

    Article  MathSciNet  Google Scholar 

  24. G. Lafferriere, A. Williams, J. Caughman, J.J.P. Veerman, Decentralized control of vehicle formations. Syst. Control Lett. 54(9), 899–910 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Mostagh, A. Jadbabaie, Distributed geodesic control laws for flocking of nonholonomic agents. IEEE Trans. Autom. Control 52(4), 681–686 (2007)

    Article  MathSciNet  Google Scholar 

  26. W. Ren, R.W. Beard, Distributed Consensus in Multi-vehicle Cooperative Control Communications and Control Engineering (Springer, London, 2008)

    MATH  Google Scholar 

  27. S.I. Roumeliotis, G.A. Bekey, Distributed multirobot localization. IEEE Trans. Robot. Autom. 18(5), 781–795 (2002)

    Article  Google Scholar 

  28. W.J. Russell, D. Klein, J.P. Hespanha, Optimal estimation on the graph cycle space, in American Control Conference, Baltimore, June 2010, pp. 1918–1924

    Google Scholar 

  29. C. Sagues, A.C. Murillo, J.J. Guerrero, T. Goedemé, T. Tuytelaars, L. Van Gool, Localization with omnidirectional images using the 1D radial trifocal tensor, in IEEE International Conference on Robotics and Automation, Orlando, May 2006, pp. 551–556

    Google Scholar 

  30. A. Sarlette, R. Sepulchre, N.E. Leonard, Autonomous rigid body attitude synchronization. Automatica 45(2), 572–577 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Savvides, W.L. Garber, R.L. Moses, M.B. Srivastava, An analysis of error inducing parameters in multihop sensor node localization. IEEE Trans. Mob. Comput. 4(6), 567–577 (2005)

    Article  Google Scholar 

  32. I. Skrjanc, G. Klancar, Optimal cooperative collision avoidance between multiple robots based on Bernstein-Bzier curves. Robot. Auton. Syst. 58(1), 1–9 (2010)

    Article  MATH  Google Scholar 

  33. S. Thrun, Y. Liu, Multi-robot SLAM with sparse extended information filters, in International Symposium of Robotics Research, Sienna, Italy, October 2003, pp. 254–266

    Google Scholar 

  34. N. Trawny, S.I. Roumeliotis, G.B. Giannakis, Cooperative multi-robot localization under communication constraints, in IEEE International Conference on Robotics and Automation, Kobe, Japan, May 2009, pp. 4394–4400

    Google Scholar 

  35. N. Trawny, X.S. Zhou, K.X. Zhou, S.I. Roumeliotis, Inter-robot transformations in 3-d. IEEE Trans. Robot. 26(2), 226–243 (2010)

    Article  Google Scholar 

  36. B. Varghese, G. McKee, A mathematical model, implementation and study of a swarm system. Robot. Auton. Syst. 58(3), 287–294 (2010)

    Article  Google Scholar 

  37. L. Xiao, S. Boyd, S. Lall, A scheme for robust distributed sensor fusion based on average consensus, in Symposium on Information Processing of Sensor Networks (IPSN), Los Angeles, CA, April 2005, pp. 63–70

    Google Scholar 

  38. X.S. Zhou, S.I. Roumeliotis, Robot-to-robot relative pose estimation from range measurements. IEEE Trans. Robot. 24(6), 1379–1393 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Aragues .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Aragues, R., Sagues, C., Mezouar, Y. (2015). Distributed Localization. In: Parallel and Distributed Map Merging and Localization. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-25886-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25886-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25884-3

  • Online ISBN: 978-3-319-25886-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics