Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1234 Accesses

Abstract

This final chapter of this thesis summarizes the research results presented in the context of this thesis and discusses potential future directions that have become available with the current success regarding the realization of strong artificial gauge fields with ultracold atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Bermudez, T. Schaetz, D. Porras, Synthetic gauge fields for vibrational excitations of trapped ions. Phys. Rev. Lett. 107, 150501 (2011)

    Article  ADS  Google Scholar 

  2. M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, Photonic Floquet topological insulators. Nature 496, 196–200 (2013)

    Article  ADS  Google Scholar 

  3. I. Carusotto, C. Ciuti, Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013)

    Article  ADS  Google Scholar 

  4. C.E. Creffield, Instability and control of a periodically driven Bose-Einstein condensate. Phys. Rev. A 79, 063612 (2009)

    Article  ADS  Google Scholar 

  5. C.A. Parra-Murillo, J. Madroñero, S. Wimberger, Two-band Bose-Hubbard model for many-body resonant tunneling in the Wannier-Stark system. Phys. Rev. A 88, 032119 (2013)

    Article  ADS  Google Scholar 

  6. S. Choudhury, E.J. Mueller, Stability of a Floquet Bose-Einstein condensate in a one-dimensional optical lattice. Phys. Rev. A 90, 013621 (2014)

    Article  ADS  Google Scholar 

  7. T. Bilitewski, N.R. Cooper, Scattering theory for Floquet-Bloch states. Phys. Rev. A 91, 033601 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Choudhury, E.J. Mueller, Transverse collisional instabilities of a Bose-Einstein condensate in a driven one-dimensional lattice. arXiv:1410.4576 (2014)

  9. L. D’Alessio, A. Polkovnikov, Many-body energy localization transition in periodically driven systems. Ann. Phys. 333, 19–33 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. M. Langemeyer, M. Holthaus, Energy flow in periodic thermodynamics. Phys. Rev. E 89, 012101 (2014)

    Article  ADS  Google Scholar 

  11. A. Lazarides, A. Das, R. Moessner, Periodic thermodynamics of isolated quantum systems. Phys. Rev. Lett. 112, 150401 (2014)

    Article  ADS  Google Scholar 

  12. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010)

    Article  ADS  Google Scholar 

  13. N. Goldman, J. Dalibard, M. Aidelsburger, N.R. Cooper, Periodically-driven quantum matter: the case of resonant modulations. Phys. Rev. A 91, 033632 (2015)

    Article  ADS  Google Scholar 

  14. C. Sträter, A. Eckardt, Orbital-driven melting of a bosonic Mott insulator. arXiv:1407.7421 (2014)

  15. E.J. Bergholtz, Z. Liu, Topological flat band models and fractional Chern insulators. Int. J. Mod. Phys. B 27, 1330017 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. S.A. Parameswaran, R. Roy, S.L. Sondhi, Fractional quantum Hall physics in topological flat bands. C. R. Phys. 14, 816–839 (2013)

    Article  ADS  Google Scholar 

  17. A.S. Sørensen, E. Demler, M.D. Lukin, Fractional Quantum Hall states of atoms in optical lattices. Phys. Rev. Lett. 94, 086803 (2005)

    Article  ADS  Google Scholar 

  18. M. Hafezi, A.S. Sørensen, E. Demler, M.D. Lukin, Fractional quantum Hall effect in optical lattices. Phys. Rev. A 76, 023613 (2007)

    Article  ADS  Google Scholar 

  19. R. Palmer, D. Jaksch, High-field fractional Quantum Hall effect in optical lattices. Phys. Rev. Lett. 96, 180407 (2006)

    Article  ADS  Google Scholar 

  20. G. Möller, N.R. Cooper, Composite fermion theory for Bosonic Quantum Hall states on lattices. Phys. Rev. Lett. 103, 105303 (2009)

    Article  ADS  Google Scholar 

  21. M. Atala, M. Aidelsburger, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Observation of chiral currents with ultracold atoms in bosonic ladders. Nat. Phys. 10, 588–593 (2014)

    Article  Google Scholar 

  22. E. Orignac, T. Giamarchi, Meissner effect in a bosonic ladder. Phys. Rev. B 64, 144515 (2001)

    Article  ADS  Google Scholar 

  23. M.-C. Cha, J.-G. Shin, Two peaks in the momentum distribution of bosons in a weakly frustrated two-leg optical ladder. Phys. Rev. A 83, 055602 (2011)

    Article  ADS  Google Scholar 

  24. A. Dhar, M. Maji, T. Mishra, R.V. Pai, S. Mukerjee, A. Paramekanti, Bose-Hubbard model in a strong effective magnetic field: emergence of a chiral Mott insulator ground state. Phys. Rev. A 85, 041602 (2012)

    Article  ADS  Google Scholar 

  25. A. Dhar, T. Mishra, M. Maji, R.V. Pai, S. Mukerjee, A. Paramekanti, Chiral Mott insulator with staggered loop currents in the fully frustrated Bose-Hubbard model. Phys. Rev. B 87, 174501 (2013)

    Article  ADS  Google Scholar 

  26. A. Petrescu, K. Le Hur, Bosonic Mott insulator with Meissner currents. Phys. Rev. Lett. 111, 150601 (2013)

    Article  ADS  Google Scholar 

  27. M. Piraud, F. Heidrich-Meisner, I.P. McCulloch, S. Greschner, T. Vekua, U. Schollwöck. Vortex and Meissner phases of strongly-interacting bosons on a two-leg ladder. arXiv:1409.7016 (2014)

  28. R. Wei, E.J. Mueller, Theory of bosons in two-leg ladders with large magnetic fields. Phys. Rev. A 89, 063617 (2014)

    Article  ADS  Google Scholar 

  29. A. Tokuno, A. Georges, Ground states of a Bose-Hubbard ladder in an artificial magnetic field: field-theoretical approach. New J. Phys. 16, 073005 (2014)

    Article  ADS  Google Scholar 

  30. W.S. Bakr, A. Peng, M.E. Tai, R. Ma, J. Simon, J.I. Gillen, S. Fölling, L. Pollet, M. Greiner, Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010)

    Article  ADS  Google Scholar 

  31. J.F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010)

    Article  ADS  Google Scholar 

  32. S. Keßler, F. Marquardt, Single-site-resolved measurement of the current statistics in optical lattices. Phys. Rev. A 89, 061601 (2014)

    Article  ADS  Google Scholar 

  33. D. Hügel, B. Paredes, Chiral ladders and the edges of quantum Hall insulators. Phys. Rev. A 89, 023619 (2014)

    Article  ADS  Google Scholar 

  34. A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I.B. Spielman, G. Juzeliūnas, M. Lewenstein, Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Aidelsburger .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aidelsburger, M. (2016). Conclusions and Outlook. In: Artificial Gauge Fields with Ultracold Atoms in Optical Lattices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-25829-4_9

Download citation

Publish with us

Policies and ethics