Skip to main content

Introduction

  • Chapter
  • First Online:
  • 1747 Accesses

Abstract

Number theory is one of the oldest subjects in mathematics. Traditionally, number theory is the purest of the pure mathematical discipline. But with the advent of modern computers, it becomes more and more computation involved, giving to the birth of computational number theory, and even the quantum computational number theory, just as analytic number theory and algebraic number theory, where analysis and algebra play an important role. This chapter provides an introduction to the basic ideas and concepts, as well as some important open problems in number theory and computational number theory and quantum computational number theory.

God used beautiful mathematics in creating the world.

Paul Dirac (1902–1984)

The 1933 Nobel Laureate in Physics

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L.M. Adleman, J. DeMarrais, M.-D.A. Huang, Quantum computability. SIAM J. Comput. 26(5), 1524–1540 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Ajtai, C. Dwork, A public-key cryptosystem with worst-case/average-case equivalence. Proceedings of Annual ACM Symposium on Theory of Computing (1997), pp. 284–293

    Google Scholar 

  3. A. Baker, A Concise Introduction to the Theory of Numbers (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  4. A. Baker, A Comprehensive Course in Number Theory (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  5. P. Benioff, The computer as a physical system – a microscopic quantum mechanical hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22(5), 563–591 (1980)

    Article  MathSciNet  Google Scholar 

  6. C.H. Bennett, Strengths and weakness of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. C.H. Bennett, D.P. DiVincenzo, Quantum information and computation. Nature 404(6775), 247–255 (2000)

    Article  Google Scholar 

  8. E. Bombieri, The Riemann Hypothesis, in The Millennium Prize Problems, ed. by J. Carlson, A. Jaffe, A. Wiles (Clay Mathematics Institute/American Mathematical Society, Providence, 2006), pp. 107–152

    Google Scholar 

  9. J. Carlson, A. Jaffe, A. Wiles (eds.), The Millennium Prize Problems (Clay Mathematics Institute/American Mathematical Society, Providence, 2006)

    MATH  Google Scholar 

  10. J.R. Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes. Sci. China Math. 16(2), 157–176 (1973)

    MATH  Google Scholar 

  11. I.L Change, R. Laflamme, P. Shor, W.H. Zurek, Quantum computers, factoring, and decoherence. Science 270(5242), 1633–1635 (1995)

    Google Scholar 

  12. A. Church, An unsolved problem of elementary number theory. Am. J. Math. 58(2), 345–363 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Church, Book review: on computable numbers, with an application to the entscheidungsproblem by Turing. J. Symb. Log. 2(1), 42–43 (1937)

    Google Scholar 

  14. H. Cohen, A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, vol.138 (Springer, New York, 1993)

    Google Scholar 

  15. S. Cook, The complexity of theorem-proving procedures, in Proceedings of the 3rd Annual ACM Symposium on the Theory of Computing, New York (1971), pp. 151–158

    Google Scholar 

  16. S. Cook, The importance of the P versus NP question. J. ACM 50(1), 27–29 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Cook, The P versus NP problem, in The Millennium Prize Problems, ed. by J. Carlson, A. Jaffe, A. Wiles (Clay Mathematics Institute/American Mathematical Society, Providence, 2006), pp. 87–106

    Google Scholar 

  18. D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. T.H. Cormen, C.E. Ceiserson, R.L. Rivest, Introduction to Algorithms, 3rd edn. (MIT Press, New York, 2009)

    Google Scholar 

  20. R. Crandall, C. Pomerance, Prime Numbers – A Computational Perspective, 2nd edn. (Springer, New York, 2005)

    MATH  Google Scholar 

  21. H. Davenport, Higher Arithmetic: An Introduction to the Theory of Numbers, 7th edn. (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  22. D. Deutsch, Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A-400(1818), 96–117 (1985)

    MathSciNet  MATH  Google Scholar 

  23. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  24. R.P. Feynman, Feynman Lectures on Computation, ed. by A.J.G. Hey, R.W. Allen (Addison-Wesley, New York, 1996)

    Google Scholar 

  25. M.R. Garey, D.S. Johnson, Computers and Intractability – A Guide to the Theory of NP-Completeness (W.H. Freeman and Company, New York, 1979)

    MATH  Google Scholar 

  26. O. Goldreich, P, NP, and NP-Completeness, (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  27. D.A. Goldston, S.W. Graham, J. Pintz, C.Y. Yildirim, Small gaps between primes or almost prime. Trans. Am. Math. Soc. 361(10), 5285–5330 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Goldwasser, S. Micali, Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. B. Green, T. Tao, The primes contain arbitrarily long arithmetic progressions. Ann. Math. 167(2), 481–547 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Grustka, Quantum Computing (McGraw-Hill, New York, 1999)

    Google Scholar 

  31. S. Hallgren, Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. J. ACM 54(1), Article 4, 19 p. (2007)

    Google Scholar 

  32. G.H. Hardy, E.M. Wright, A. Wiles, An Introduction to the Theory of Numbers, 6th edn. (Oxford University Press, Oxford, 2008)

    Google Scholar 

  33. J. Hoffstein, N. Howgrave-Graham, J. Pipher et al., NTRUEncrypt and NTRUSign: efficient public key algorithms for a post-quantum world, in Proceedings of the International Workshop on Post-quantum Cryptography, 23–26 May 2006, pp. 71–77

    Google Scholar 

  34. J. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata Theory, Languages, and Computation, 3rd edn. (Addison-Wesley, New York, 2007)

    MATH  Google Scholar 

  35. T. Kleinjung, K. Aoki, J. Franke et al., Factorization of a 768-Bit RSA modulus, in Advances in Cryptology – Crypto 2010. Lecture Notes in Computer Science, vol. 6223 (Springer, New York, 2010), pp. 333–350

    Google Scholar 

  36. D.E. Knuth, The Art of Computer Programming II – Seminumerical Algorithms, 3rd edn. (Addison-Wesley, New York, 1998)

    MATH  Google Scholar 

  37. A.K. Lenstra, H.W. Lenstra, L. Lovász, Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  38. H.W. Lenstra Jr., Solving the Pell equation. Not. AMS 49(2), 182–192 (2002)

    MathSciNet  MATH  Google Scholar 

  39. H.R. Lewis, C.H. Papadimitrou, Elements of the Theory of Computation (Prentice-Hall, Englewood Cliffs, 1998)

    Google Scholar 

  40. K.S. McCurley, The discrete logarithm problem, in Cryptology and Computational Number Theory, ed. by C. Pomerance. Proceedings of Symposia in Applied Mathematics, vol. 42 (American Mathematics Society, Providence, 1990), pp. 49–74

    Google Scholar 

  41. N.D. Mermin, Quantum Computer Science (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  42. M.A. Nielson, I.L. Chuang, Quantum Computation and Quantum Information, 10th anniversary edition (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  43. I. Niven, H.S. Zuckman, H.L. Montgomery, An Introduction to the Theory of Numbers, 5th edn. (Wiley, New York, 1991)

    Google Scholar 

  44. J. Proos, C. Zalka, Shor’s discrete logarithm algorithm for elliptic curves. Quantum Inf. Comput. 3(4), 317–344 (2003)

    MathSciNet  MATH  Google Scholar 

  45. H. Riesel, Prime Numbers and Computer Methods for Factorization (Birkhäuser, Boston, 1990)

    MATH  Google Scholar 

  46. M.O. Rabin, Digitalized Signatures and Public-Key Functions as Intractable as Factorization (MIT Laboratory for Computer Science, Cambridge, MA, 1979)

    Google Scholar 

  47. P. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of 35th Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, New York, 1994), pp. 124–134

    Google Scholar 

  48. P. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MathSciNet  Google Scholar 

  49. P. Shor, Introduction to quantum algorithms, in AMS Proceedings of Symposium in Applied Mathematics, vol. 58 (2002), pp. 143–159

    Google Scholar 

  50. P. Shor, Why haven’t more quantum algorithms been found? J. ACM 50(1), 87–90 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. D.R. Simon, On the power of quantum computation, in Proceedings of the 35 Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, New York, 1994), pp. 116–123

    Google Scholar 

  52. D.R. Simon, On the power of quantum computation. SIAM J. Comput. 25(5), 1474–1483 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  53. M. Sipser, Introduction to the Theory of Computation, 2nd edn. (Thomson, Toronto, 2006)

    MATH  Google Scholar 

  54. A. Turing, On computable numbers, with an application to the entscheidungsproblem. Proc. Lond. Math. Soc. S2-42(1), 230–265 (1937)

    Google Scholar 

  55. D. Weber, T.F. Denny, The solution of McCurley’s discrete log challenge, in Advances in Cryptology – CRYPTO 1998. Lecture Notes in Computer Science, vol. 1462 (1998), Springer, New York, pp. 458–471

    Google Scholar 

  56. C.P. Williams, S.H. Clearwater, Explorations in Quantum Computation. The Electronic Library of Science (TELOS) (Springer, New York, 1998)

    Google Scholar 

  57. C.P. Williams, Explorations in Quantum Computation, 2nd edn. (Springer, New York, 2011)

    Book  Google Scholar 

  58. A. Wiles, The Birch and Swinnerton-Dyer conjecture, in The Millennium Prize Problems, ed. by J. Carlson, A. Jaffe, A. Wiles (Clay Mathematics Institute/American Mathematical Society, Providence, 2006), pp. 31–44

    Google Scholar 

  59. S.Y. Yan, Number Theory for Computing, 2nd edn. (Springer, New York, 2002)

    Book  Google Scholar 

  60. N.S. Yanofsky, M.A. Mannucci, Quantum Computing for Computer Scientists (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  61. A. Yao, Classical physics and the Church-Turing thesis. J. ACM 50(1), 100–105 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  62. Y.T. Zhang, Bounded gaps between primes. Ann. Math. 179(3), 1121–1174 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yan, S.Y. (2015). Introduction. In: Quantum Computational Number Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-25823-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25823-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25821-8

  • Online ISBN: 978-3-319-25823-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics