Theory of Quantum-Dot Optical Devices

Part of the Springer Theses book series (Springer Theses)


Modern semiconductor optical devices can consist of a complex arrangement of several different semiconductor crystal layers. By further processing, the semiconductor structure is then shaped into the desired device geometry. Additional steps, such as planarization and contacting, are then required to yield the final usable device. Naturally, a complete microscopic description of the resulting object in all its degrees of freedom is not tractable. Therefore, a restriction to only few degrees of freedom is required, while still maintaining all necessary aspects determining the system behavior.


Quantum Dots Layered Semiconductor Crystals Charge Carrier Scattering Quasi-equilibrium Temperature Dynamic Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W.W. Chow, H.C. Schneider, M.C. Phillips, Theory of quantum-coherence phenomena in semiconductor quantum dots. Phys. Rev. A 68, 053802 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    S. Rodt, A. Schliwa, K. Pötschke, F. Guffarth, D. Bimberg, Correlation of structural and few-particle properties of self-organized InAs/GaAs quantum dots. Phys. Rev. B 71, 155325 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    T. Feldtmann, L. Schneebeli, M. Kira, S.W. Koch, Quantum theory of light emission from a semiconductor quantum dot. Phys. Rev. B 73, 155319 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    C. Gies, J. Wiersig, M. Lorke, F. Jahnke, Semiconductor model for quantum-dot-based microcavity lasers. Phys. Rev. A 75, 013803 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    N.A. Naderi, M. Pochet, F. Grillot, N.B. Terry, V. Kovanis, L.F. Lester, Modeling the injection-locked behavior of a quantum dash semiconductor laser. IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009)CrossRefGoogle Scholar
  6. 6.
    L.V. Asryan, R.A. Suris, Upper limit for the modulation bandwidth of a quantum dot laser. Appl. Phys. Lett. 96, 221112 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    T. Erneux, E.A. Viktorov, B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, Optically injected quantum-dot lasers. Opt. Lett. 35, 070937 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    C.Z. Tong, S.F. Yoon, C.Y. Ngo, C.Y. Liu, W.K. Loke, Rate equations for 1.3-\(\upmu \)m dots-under-a-well and dots-in-a-well self-assembled InAs-GaAs quantum-dot lasers. IEEE J. Quantum Electron. 42, 1175–1183 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    K. Lüdge, E. Schöll, Quantum-dot lasers—desynchronized nonlinear dynamics of electrons and holes. IEEE J. Quantum Electron. 45, 1396–1403 (2009)CrossRefGoogle Scholar
  10. 10.
    M. Gioannini, Ground-state quenching in two-state lasing quantum dot lasers. J. Appl. Phys. 111, 043108 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    C. Wang, B. Lingnau, K. Lüdge, J. Even, F. Grillot, Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state. IEEE J. Quantum Electron. 50, 723–731 (2014)ADSGoogle Scholar
  12. 12.
    E. Schöll, Nonequilibrium Phase Transitions in Semiconductors (Springer, Berlin, 1987)CrossRefGoogle Scholar
  13. 13.
    A.V. Uskov, F. Adler, H. Schweizer, M.H. Pilkuhn, Auger carrier relaxation in self-assembled quantum dots by collisions with two-dimensional carriers. J. Appl. Phys. 81, 7895 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    E. Schöll, W. Quade, Effect of impact ionization on hot carrier energy and momentum relaxation in semiconductors. J. Phys. C 20, L861 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    W. Quade, M. Rudan, E. Schöll, Hydrodynamic simulation of impact-ionization effects in p-n junctions. IEEE Trans. CAD 10, 1287 (1991)CrossRefGoogle Scholar
  16. 16.
    W. Quade, E. Schöll, M. Rudan, Impact ionization within the hydrodynamic approach to semiconductor transport. Solid State Electron. 36, 1493 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    P. Borri, S. Ceccherini, M. Gurioli, F. Bogani, Auger heating of carriers in GaAs/AlAs heterostructures. Solid State Commun. 103, 77–81 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    J.N. Fehr, M.A. Dupertuis, T.P. Hessler, L. Kappei, D. Marti, F. Salleras, M.S. Nomura, B. Deveaud, J.-Y. Emery, B. Dagens, Hot phonons and Auger related carrier heating in semiconductor optical amplifiers. IEEE J. Quantum Electron. 38, 674 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    M. Achermann, A.P. Bartko, J.A. Hollingsworth, V.I. Klimov, The effect of auger heating on intraband carrier relaxation in semiconductor quantum rods. Nat. Phys. 2, 557–561 (2006)CrossRefGoogle Scholar
  20. 20.
    G.D. Mahan, Many-Particle Physics (Plenum, New York, 1990)CrossRefGoogle Scholar
  21. 21.
    H. Haug, S.W. Koch, Semiconductor laser theory with many-body effects. Phys. Rev. A 39, 1887 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    W.W. Chow, S.W. Koch, Theory of semiconductor quantum-dot laser dynamics. IEEE J. Quantum Electron. 41, 495–505 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    H. Haug, A.P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 1996)Google Scholar
  24. 24.
    T.R. Nielsen, P. Gartner, F. Jahnke, Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers. Phys. Rev. B 69, 235314 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    E. Malić, K.J. Ahn, M.J.P. Bormann, P. Hövel, E. Schöll, A. Knorr, M. Kuntz, D. Bimberg, Theory of relaxation oscillations in semiconductor quantum dot lasers. Appl. Phys. Lett. 89, 101107 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    N. Majer, K. Lüdge, E. Schöll, Cascading enables ultrafast gain recovery dynamics of quantum dot semiconductor optical amplifiers. Phys. Rev. B 82, 235301 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    H. Haug, S. Schmitt-Rink, Electron theory of the optical properties of laser-excited semiconductors. Prog. Quantum Electron. 9, 3 (1984)ADSCrossRefGoogle Scholar
  28. 28.
    R. Binder, D. Scott, A.E. Paul, M. Lindberg, K. Henneberger, S.W. Koch, Carrier-carrier scattering and optical dephasing in highly excited semiconductors. Phys. Rev. B 45, 1107 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    D.B. Tran Thoai, H. Haug, Coulomb quantum kinetics in pulse-excited semiconductors. Z. Phys. B 91, 199–207 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    F.X. Camescasse, A. Alexandrou, D. Hulin, L. Bányai, D.B. Tran Thoai, H. Haug, Ultrafast electron redistribution through Coulomb scattering in undoped GaAs: experiment and theory. Phys. Rev. Lett. 77, 5429–5432 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    M.G. Kane, Nonequilibrium carrier-carrier scattering in two-dimensional carrier systems. Phys. Rev. B 54, 16345–16348 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    L. Bányai, Q.T. Vu, B. Mieck, H. Haug, Ultrafast quantum kinetics of time-dependent RPA-screened Coulomb scattering. Phys. Rev. Lett. 81, 882–885 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    K. Lüdge, Modeling quantum dot based laser devices, in Nonlinear Laser Dynamics—From Quantum Dots to Cryptography, ed. by K. Lüdge (WILEY-VCH Weinheim, Weinheim, 2012), chap. 1, pp. 3–34Google Scholar
  34. 34.
    J. Urayama, T.B. Norris, H. Jiang, J. Singh, P. Bhattacharya, Temperature-dependent carrier dynamics in self-assembled InGaAs quantum dots. Appl. Phys. Lett. 80, 2162–2164 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    M. Rossetti, A. Fiore, G. Sek, C. Zinoni, L. Li, Modeling the temperature characteristics of InAs/GaAs quantum dot lasers. J. Appl. Phys. 106, 023105 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 1999)CrossRefzbMATHGoogle Scholar
  37. 37.
    M. Asada, Intraband relaxation time in quantum-well lasers. IEEE J. Quantum Electron. 25, 2019–2026 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    Y.C. Wen, C.Y. Chen, C.H. Shen, S. Gwo, C.K. Sun, Ultrafast carrier thermalization in InN. Appl. Phys. Lett. 89, 232114 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    M. Vallone, Quantum well electron scattering rates through longitudinal optic-phonon dynamical screened interaction: an analytic approach. J. Appl. Phys. 114, 053704 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    T. Inoshita, H. Sakaki, Electron relaxation in a quantum dot: significance of multiphonon processes. Phys. Rev. B 46, 7260–7263 (1992)ADSCrossRefGoogle Scholar
  41. 41.
    J. Feldmann, S.T. Cundiff, M. Arzberger, G. Böhm, G. Abstreiter, Carrier capture into InAs/GaAs quantum dots via multiple optical phonon emission. J. Appl. Phys. 89, 1180 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    J. Seebeck, T.R. Nielsen, P. Gartner, F. Jahnke, Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation. Phys. Rev. B 71, 125327 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    J. Seebeck, M. Lorke, P. Gartner, F. Jahnke, Carrier-carrier and carrier-phonon scattering in the low-density and low-temperature regime for resonantly pumped semiconductor quantum dots. Phys. Status Solidi (C) 6(2), 488–491 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    A. Steinhoff, P. Gartner, M. Florian, F. Jahnke, Treatment of carrier scattering in quantum dots beyond the Boltzmann equation. Phys. Rev. B 85, 205144 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    A. Steinhoff, H. Kurtze, P. Gartner, M. Florian, D. Reuter, A.D. Wieck, M. Bayer, F. Jahnke, Combined influence of Coulomb interaction and polarons on the carrier dynamics in InGaAs quantum dots. Phys. Rev. B 88, 205309 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    K. Schuh, P. Gartner, F. Jahnke, Combined influence of carrier-phonon and coulomb scattering on the quantum-dot population dynamics. Phys. Rev. B 87, 035301 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    H. Haken, Laser Theory (Springer, Berlin, 1983)CrossRefGoogle Scholar
  48. 48.
    S. Ritter, P. Gartner, C. Gies, F. Jahnke, Emission properties and photon statistics of a single quantum dot laser. Opt. Express 18, 9909 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    C. Gies, M. Florian, P. Gartner, F. Jahnke, The single quantum dot-laser: lasing and strong coupling in the high-excitation regime. Opt. Express 19, 14370 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    O. Benson, C. Santori, M. Pelton, Y. Yamamoto, Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000)ADSCrossRefGoogle Scholar
  51. 51.
    W. Unrau, D. Quandt, J.H. Schulze, T. Heindel, T.D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U.W. Pohl, D. Bimberg, Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection. Appl. Phys. Lett. 101(21), 211119 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    G. Callsen, A. Carmele, G. Hönig, C. Kindel, J. Brunnmeier, M. Wagner, E. Stock, J.S. Reparaz, A. Schliwa, S. Reitzenstein, A. Knorr, A. Hoffmann, S. Kako, Y. Arakawa, Steering photon statistics in single quantum dots: from one- to two-photon emission. Phys. Rev. B 87, 245314 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, Observing chaos for quantum-dot microlasers with external feedback. Nat. Commun. 2, 366 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    F. Schulze, B. Lingnau, S.M. Hein, A. Carmele, E. Schöll, K. Lüdge, A. Knorr, Feedback-induced steady-state light bunching above the lasing threshold. Phys. Rev. A 89, 041801(R) (2014)ADSCrossRefGoogle Scholar
  55. 55.
    D. Lenstra, M. Yousefi, Rate-equation model for multi-mode semiconductor lasers with spatial hole burning. Opt. Express 22, 8143–8149 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    H. Kogelnik, C.V. Shank, Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43, 2327–2335 (1972)ADSCrossRefGoogle Scholar
  57. 57.
    J. Minch, S.L. Chuang, C.S. Chang, W. Fang, Y.K. Chen, T. Tanbun-Ek, Theory and experiment on the amplified spontaneous emission from distributed-feedback lasers. IEEE J. Quantum Electron. 33, 815–823 (1997)ADSCrossRefGoogle Scholar
  58. 58.
    M. Gioannini, M. Rossetti, Time-domain traveling wave model of quantum dot DFB lasers. IEEE J. Sel. Top. Quantum Electron. 17, 1318–1326 (2011)CrossRefGoogle Scholar
  59. 59.
    Y.Z. Huang, Z. Pan, R.H. Wu, Analysis of the optical confinement factor in semiconductor lasers. J. Appl. Phys. 79, 3827–3830 (1996)ADSCrossRefGoogle Scholar
  60. 60.
    F. Salin, J. Squier, Gain guiding in solid-state lasers. Opt. Lett. 17, 1352–1354 (1992)ADSCrossRefGoogle Scholar
  61. 61.
    N.J. van Druten, S.S.R. Oemrawsingh, Y. Lien, C. Serrat, M.P. van Exter, J.P. Woerdman, Observation of transverse modes in a microchip laser with combined gain and index guiding. J. Opt. Soc. Am. B 18, 1793–1804 (2001)ADSCrossRefGoogle Scholar
  62. 62.
    M.O. Scully, Quantum Optics (Cambridge University Press, Cambridge, 1997)CrossRefGoogle Scholar
  63. 63.
    H.C. Schneider, W.W. Chow, S.W. Koch, Many-body effects in the gain spectra of highly excited quantum dot lasers. Phys. Rev. B 64, 115315 (2001)ADSCrossRefGoogle Scholar
  64. 64.
    B. Lingnau, K. Lüdge, E. Schöll, W.W. Chow, Many-body and nonequilibrium effects on relaxation oscillations in a quantum-dot microcavity laser. Appl. Phys. Lett. 97, 111102 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87, 157401 (2001)ADSCrossRefGoogle Scholar
  66. 66.
    H.C. Schneider, W.W. Chow, S.W. Koch, Excitation-induced dephasing in semiconductor quantum dots. Phys. Rev. B 70, 235308 (2004)ADSCrossRefGoogle Scholar
  67. 67.
    H.H. Nilsson, J.Z. Zhang, I. Galbraith, Homogeneous broadening in quantum dots due to Auger scattering with wetting layer carriers. Phys. Rev. B 72, 205331 (2005)ADSCrossRefGoogle Scholar
  68. 68.
    M. Lorke, J. Seebeck, T.R. Nielsen, P. Gartner, F. Jahnke, Excitation dependence of the homogeneous linewidths in quantum dots. Phys. Status Solidi (C) 3, 2393–2396 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    Q.T. Vu, H. Haug, S.W. Koch, Relaxation and dephasing quantum kinetics for a quantum dot in an optically excited quantum well. Phys. Rev. B 73, 205317 (2006)ADSCrossRefGoogle Scholar
  70. 70.
    T. Koprucki, A. Wilms, A. Knorr, U. Bandelow, Modeling of quantum dot lasers with microscopic treatment of Coulomb effects. Opt. Quantum Electron. 42, 777–783 (2011)CrossRefGoogle Scholar
  71. 71.
    A. Schliwa, M. Winkelnkemper, D. Bimberg, Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As/GaAs quantum dots. Phys. Rev. B 76, 205324 (2007)ADSCrossRefGoogle Scholar
  72. 72.
    W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)ADSCrossRefzbMATHGoogle Scholar
  73. 73.
    A. Beattie, P.T. Landsberg, Auger effect in semiconductors. Proc. R. Soc. A 249, 16–29 (1959)ADSCrossRefGoogle Scholar
  74. 74.
    Y. Nambu, A. Tomita, H. Saito, K. Nishi, Effects of spectral broadening and cross relaxation on the gain saturation characteristics of quantum dot laser amplifiers. Jpn. J. Appl. Phys. 38, 5087 (1999)ADSCrossRefGoogle Scholar
  75. 75.
    W. Lei, M. Offer, A. Lorke, C. Notthoff, C. Meier, O. Wibbelhoff, A.D. Wieck, Probing the band structure of InAs/GaAs quantum dots by capacitance-voltage and photoluminescence spectroscopy. Appl. Phys. Lett. 92, 193111 (2008)ADSCrossRefGoogle Scholar
  76. 76.
    Y. Kaptan, A. Röhm, B. Herzog, B. Lingnau, H. Schmeckebier, D. Arsenijević, V. Mikhelashvili, O. Schops, M. Kolarczik, G. Eisenstein, D. Bimberg, U. Woggon, N. Owschimikow, K. Lüdge, Stability of a quantum dot excited state laser during simultaneous ground state amplification. Appl. Phys. Lett. 105, 191105-1–191105-4 (2014)ADSCrossRefGoogle Scholar
  77. 77.
    Y. Kaptan, H. Schmeckebier, B. Herzog, D. Arsenijević, M. Kolarczik, V. Mikhelashvili, N. Owschimikow, G. Eisenstein, D. Bimberg, U. Woggon, Gain dynamics of quantum dot devices for dual-state operation. Appl. Phys. Lett. 104, 261108 (2014)ADSCrossRefGoogle Scholar
  78. 78.
    P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Exciton relaxation and dephasing in quantum-dot amplifiers from room to cryogenic temperature. IEEE J. Sel. Top. Quantum Electron. 8, 984–991 (2002)CrossRefGoogle Scholar
  79. 79.
    A. Wilms, D. Breddermann, P. Mathe, Theory of direct capture from two- and three-dimensional reservoirs to quantum dot states. Phys. Status Solidi (C) 9, 1278–1280 (2012)ADSCrossRefGoogle Scholar
  80. 80.
    R. Loudon, The Quantum Theory of Light (Oxford Science Publications, Oxford, 2000)zbMATHGoogle Scholar
  81. 81.
    P. Gartner, J. Seebeck, F. Jahnke, Relaxation properties of the quantum kinetics of carrier-LO-phonon interaction in quantum wells and quantum dots. Phys. Rev. B 73, 115307 (2006)ADSCrossRefGoogle Scholar
  82. 82.
    V. Flunkert, E. Schöll, Suppressing noise-induced intensity pulsations in semiconductor lasers by means of time-delayed feedback. Phys. Rev. E 76, 066202 (2007)ADSCrossRefGoogle Scholar
  83. 83.
    Y. Liu, W.-C. Ng, K.D. Choquette, K. Hess, Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 41, 15–25 (2005)ADSCrossRefGoogle Scholar
  84. 84.
    A.V. Uskov, E.P. O’Reilly, D. McPeake, D. Bimberg, G. Huyet, N.N. Ledentsov, Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states. Appl. Phys. Lett. 84, 272–274 (2004)ADSCrossRefGoogle Scholar
  85. 85.
    X. Li, T. Wang, C. Dong, J. Tang, B. Liu, Y. He, Modified Drude model for free-carrier absorption due to bound-to-continuum transition in quantum-dot semiconductor optical amplifier. J. Appl. Phys. 114, 154506 (2013)ADSCrossRefGoogle Scholar
  86. 86.
    D. Klotzkin, P. Bhattacharya, Temperature dependence of dynamic and DC characteristics of quantum-well and quantum-dot lasers: a comparative study. J. Lightwave Technol. 17, 1634 (1999)ADSCrossRefGoogle Scholar
  87. 87.
    M.A. Cataluna, E.A. Viktorov, P. Mandel, W. Sibbett, D.A. Livshits, J. Weimert, A.R. Kovsh, E.U. Rafailov, Temperature dependence of pulse duration in a mode-locked quantum-dot laser. Appl. Phys. Lett. 90, 101102 (2007)ADSCrossRefGoogle Scholar
  88. 88.
    Y. Arakawa, H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939 (1982)ADSCrossRefGoogle Scholar
  89. 89.
    K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, Temperature-insensitive eye-opening under \(10\)-Gb/s modulation of 1.3 \(\upmu \)m p-doped quantum-dot lasers without current adjustments. Jpn. J. Appl. Phys. 43, L1124 (2004)ADSCrossRefGoogle Scholar
  90. 90.
    K.T. Tan, C. Marinelli, M.G. Thompson, A. Wonfor, M. Silver, R.L. Sellin, R.V. Penty, I.H. White, M. Kuntz, M. Lämmlin, N.N. Ledentsov, D. Bimberg, A.E. Zhukov, V.M. Ustinov, A.R. Kovsh, High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers. IEEE Photonics Technol. Lett. 16, 1415 (2004)ADSCrossRefGoogle Scholar
  91. 91.
    S.S. Mikhrin, A.R. Kovsh, I.L. Krestnikov, A.V. Kozhukhov, D.A. Livshits, N.N. Ledentsov, Y.M. Shernyakov, I.I. Novikov, M.V. Maximov, V.M. Ustinov, Z.I. Alferov, High power temperature-insensitive 1.3 \(\upmu \)m InAs/InGaAs/GaAs quantum dot lasers. Semicond. Sci. Technol. 20, 340–342 (2005)ADSCrossRefGoogle Scholar
  92. 92.
    M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, Y. Nakata, Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gbs directly modulated lasers and 40 Gbs signal-regenerative amplifiers. J. Phys. D 38, 2126–2134 (2005)ADSCrossRefGoogle Scholar
  93. 93.
    O.B. Shchekin, G. Park, D.L. Huffaker, D.G. Deppe, Discrete energy level separation and the threshold temperature dependence of quantum dot lasers. Appl. Phys. Lett. 77(4), 466–468 (2000)ADSCrossRefGoogle Scholar
  94. 94.
    J. Wang, H. Schweizer, A quantitative comparison of the classical rate-equation model with the carrier heating model on dynamics of the quantum-well laser: the role of carrier energy relaxation, electron-hole interaction, and Auger effect. IEEE J. Quantum Electron. 33, 1350–1359 (1997)ADSCrossRefGoogle Scholar
  95. 95.
    A.V. Uskov, C. Meuer, H. Schmeckebier, D. Bimberg, Auger capture induced carrier heating in quantum dot lasers and amplifiers. Appl. Phys. Express 4, 022202 (2011)ADSCrossRefGoogle Scholar
  96. 96.
    N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 99, 131102 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations