Skip to main content

Theory of Quantum-Dot Optical Devices

  • Chapter
  • First Online:
  • 591 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Modern semiconductor optical devices can consist of a complex arrangement of several different semiconductor crystal layers. By further processing, the semiconductor structure is then shaped into the desired device geometry. Additional steps, such as planarization and contacting, are then required to yield the final usable device. Naturally, a complete microscopic description of the resulting object in all its degrees of freedom is not tractable. Therefore, a restriction to only few degrees of freedom is required, while still maintaining all necessary aspects determining the system behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W.W. Chow, H.C. Schneider, M.C. Phillips, Theory of quantum-coherence phenomena in semiconductor quantum dots. Phys. Rev. A 68, 053802 (2003)

    Article  ADS  Google Scholar 

  2. S. Rodt, A. Schliwa, K. Pötschke, F. Guffarth, D. Bimberg, Correlation of structural and few-particle properties of self-organized InAs/GaAs quantum dots. Phys. Rev. B 71, 155325 (2005)

    Article  ADS  Google Scholar 

  3. T. Feldtmann, L. Schneebeli, M. Kira, S.W. Koch, Quantum theory of light emission from a semiconductor quantum dot. Phys. Rev. B 73, 155319 (2006)

    Article  ADS  Google Scholar 

  4. C. Gies, J. Wiersig, M. Lorke, F. Jahnke, Semiconductor model for quantum-dot-based microcavity lasers. Phys. Rev. A 75, 013803 (2007)

    Article  ADS  Google Scholar 

  5. N.A. Naderi, M. Pochet, F. Grillot, N.B. Terry, V. Kovanis, L.F. Lester, Modeling the injection-locked behavior of a quantum dash semiconductor laser. IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009)

    Article  Google Scholar 

  6. L.V. Asryan, R.A. Suris, Upper limit for the modulation bandwidth of a quantum dot laser. Appl. Phys. Lett. 96, 221112 (2010)

    Article  ADS  Google Scholar 

  7. T. Erneux, E.A. Viktorov, B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, Optically injected quantum-dot lasers. Opt. Lett. 35, 070937 (2010)

    Article  ADS  Google Scholar 

  8. C.Z. Tong, S.F. Yoon, C.Y. Ngo, C.Y. Liu, W.K. Loke, Rate equations for 1.3-\(\upmu \)m dots-under-a-well and dots-in-a-well self-assembled InAs-GaAs quantum-dot lasers. IEEE J. Quantum Electron. 42, 1175–1183 (2006)

    Article  ADS  Google Scholar 

  9. K. Lüdge, E. Schöll, Quantum-dot lasers—desynchronized nonlinear dynamics of electrons and holes. IEEE J. Quantum Electron. 45, 1396–1403 (2009)

    Article  Google Scholar 

  10. M. Gioannini, Ground-state quenching in two-state lasing quantum dot lasers. J. Appl. Phys. 111, 043108 (2012)

    Article  ADS  Google Scholar 

  11. C. Wang, B. Lingnau, K. Lüdge, J. Even, F. Grillot, Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state. IEEE J. Quantum Electron. 50, 723–731 (2014)

    ADS  Google Scholar 

  12. E. Schöll, Nonequilibrium Phase Transitions in Semiconductors (Springer, Berlin, 1987)

    Book  Google Scholar 

  13. A.V. Uskov, F. Adler, H. Schweizer, M.H. Pilkuhn, Auger carrier relaxation in self-assembled quantum dots by collisions with two-dimensional carriers. J. Appl. Phys. 81, 7895 (1997)

    Article  ADS  Google Scholar 

  14. E. Schöll, W. Quade, Effect of impact ionization on hot carrier energy and momentum relaxation in semiconductors. J. Phys. C 20, L861 (1987)

    Article  ADS  Google Scholar 

  15. W. Quade, M. Rudan, E. Schöll, Hydrodynamic simulation of impact-ionization effects in p-n junctions. IEEE Trans. CAD 10, 1287 (1991)

    Article  Google Scholar 

  16. W. Quade, E. Schöll, M. Rudan, Impact ionization within the hydrodynamic approach to semiconductor transport. Solid State Electron. 36, 1493 (1993)

    Article  ADS  Google Scholar 

  17. P. Borri, S. Ceccherini, M. Gurioli, F. Bogani, Auger heating of carriers in GaAs/AlAs heterostructures. Solid State Commun. 103, 77–81 (1997)

    Article  ADS  Google Scholar 

  18. J.N. Fehr, M.A. Dupertuis, T.P. Hessler, L. Kappei, D. Marti, F. Salleras, M.S. Nomura, B. Deveaud, J.-Y. Emery, B. Dagens, Hot phonons and Auger related carrier heating in semiconductor optical amplifiers. IEEE J. Quantum Electron. 38, 674 (2002)

    Article  ADS  Google Scholar 

  19. M. Achermann, A.P. Bartko, J.A. Hollingsworth, V.I. Klimov, The effect of auger heating on intraband carrier relaxation in semiconductor quantum rods. Nat. Phys. 2, 557–561 (2006)

    Article  Google Scholar 

  20. G.D. Mahan, Many-Particle Physics (Plenum, New York, 1990)

    Book  Google Scholar 

  21. H. Haug, S.W. Koch, Semiconductor laser theory with many-body effects. Phys. Rev. A 39, 1887 (1989)

    Article  ADS  Google Scholar 

  22. W.W. Chow, S.W. Koch, Theory of semiconductor quantum-dot laser dynamics. IEEE J. Quantum Electron. 41, 495–505 (2005)

    Article  ADS  Google Scholar 

  23. H. Haug, A.P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 1996)

    Google Scholar 

  24. T.R. Nielsen, P. Gartner, F. Jahnke, Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers. Phys. Rev. B 69, 235314 (2004)

    Article  ADS  Google Scholar 

  25. E. Malić, K.J. Ahn, M.J.P. Bormann, P. Hövel, E. Schöll, A. Knorr, M. Kuntz, D. Bimberg, Theory of relaxation oscillations in semiconductor quantum dot lasers. Appl. Phys. Lett. 89, 101107 (2006)

    Article  ADS  Google Scholar 

  26. N. Majer, K. Lüdge, E. Schöll, Cascading enables ultrafast gain recovery dynamics of quantum dot semiconductor optical amplifiers. Phys. Rev. B 82, 235301 (2010)

    Article  ADS  Google Scholar 

  27. H. Haug, S. Schmitt-Rink, Electron theory of the optical properties of laser-excited semiconductors. Prog. Quantum Electron. 9, 3 (1984)

    Article  ADS  Google Scholar 

  28. R. Binder, D. Scott, A.E. Paul, M. Lindberg, K. Henneberger, S.W. Koch, Carrier-carrier scattering and optical dephasing in highly excited semiconductors. Phys. Rev. B 45, 1107 (1992)

    Article  ADS  Google Scholar 

  29. D.B. Tran Thoai, H. Haug, Coulomb quantum kinetics in pulse-excited semiconductors. Z. Phys. B 91, 199–207 (1992)

    Article  ADS  Google Scholar 

  30. F.X. Camescasse, A. Alexandrou, D. Hulin, L. Bányai, D.B. Tran Thoai, H. Haug, Ultrafast electron redistribution through Coulomb scattering in undoped GaAs: experiment and theory. Phys. Rev. Lett. 77, 5429–5432 (1996)

    Article  ADS  Google Scholar 

  31. M.G. Kane, Nonequilibrium carrier-carrier scattering in two-dimensional carrier systems. Phys. Rev. B 54, 16345–16348 (1996)

    Article  ADS  Google Scholar 

  32. L. Bányai, Q.T. Vu, B. Mieck, H. Haug, Ultrafast quantum kinetics of time-dependent RPA-screened Coulomb scattering. Phys. Rev. Lett. 81, 882–885 (1998)

    Article  ADS  Google Scholar 

  33. K. Lüdge, Modeling quantum dot based laser devices, in Nonlinear Laser Dynamics—From Quantum Dots to Cryptography, ed. by K. Lüdge (WILEY-VCH Weinheim, Weinheim, 2012), chap. 1, pp. 3–34

    Google Scholar 

  34. J. Urayama, T.B. Norris, H. Jiang, J. Singh, P. Bhattacharya, Temperature-dependent carrier dynamics in self-assembled InGaAs quantum dots. Appl. Phys. Lett. 80, 2162–2164 (2002)

    Article  ADS  Google Scholar 

  35. M. Rossetti, A. Fiore, G. Sek, C. Zinoni, L. Li, Modeling the temperature characteristics of InAs/GaAs quantum dot lasers. J. Appl. Phys. 106, 023105 (2009)

    Article  ADS  Google Scholar 

  36. W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  37. M. Asada, Intraband relaxation time in quantum-well lasers. IEEE J. Quantum Electron. 25, 2019–2026 (1989)

    Article  ADS  Google Scholar 

  38. Y.C. Wen, C.Y. Chen, C.H. Shen, S. Gwo, C.K. Sun, Ultrafast carrier thermalization in InN. Appl. Phys. Lett. 89, 232114 (2006)

    Article  ADS  Google Scholar 

  39. M. Vallone, Quantum well electron scattering rates through longitudinal optic-phonon dynamical screened interaction: an analytic approach. J. Appl. Phys. 114, 053704 (2013)

    Article  ADS  Google Scholar 

  40. T. Inoshita, H. Sakaki, Electron relaxation in a quantum dot: significance of multiphonon processes. Phys. Rev. B 46, 7260–7263 (1992)

    Article  ADS  Google Scholar 

  41. J. Feldmann, S.T. Cundiff, M. Arzberger, G. Böhm, G. Abstreiter, Carrier capture into InAs/GaAs quantum dots via multiple optical phonon emission. J. Appl. Phys. 89, 1180 (2001)

    Article  ADS  Google Scholar 

  42. J. Seebeck, T.R. Nielsen, P. Gartner, F. Jahnke, Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation. Phys. Rev. B 71, 125327 (2005)

    Article  ADS  Google Scholar 

  43. J. Seebeck, M. Lorke, P. Gartner, F. Jahnke, Carrier-carrier and carrier-phonon scattering in the low-density and low-temperature regime for resonantly pumped semiconductor quantum dots. Phys. Status Solidi (C) 6(2), 488–491 (2009)

    Article  ADS  Google Scholar 

  44. A. Steinhoff, P. Gartner, M. Florian, F. Jahnke, Treatment of carrier scattering in quantum dots beyond the Boltzmann equation. Phys. Rev. B 85, 205144 (2012)

    Article  ADS  Google Scholar 

  45. A. Steinhoff, H. Kurtze, P. Gartner, M. Florian, D. Reuter, A.D. Wieck, M. Bayer, F. Jahnke, Combined influence of Coulomb interaction and polarons on the carrier dynamics in InGaAs quantum dots. Phys. Rev. B 88, 205309 (2013)

    Article  ADS  Google Scholar 

  46. K. Schuh, P. Gartner, F. Jahnke, Combined influence of carrier-phonon and coulomb scattering on the quantum-dot population dynamics. Phys. Rev. B 87, 035301 (2013)

    Article  ADS  Google Scholar 

  47. H. Haken, Laser Theory (Springer, Berlin, 1983)

    Book  Google Scholar 

  48. S. Ritter, P. Gartner, C. Gies, F. Jahnke, Emission properties and photon statistics of a single quantum dot laser. Opt. Express 18, 9909 (2010)

    Article  ADS  Google Scholar 

  49. C. Gies, M. Florian, P. Gartner, F. Jahnke, The single quantum dot-laser: lasing and strong coupling in the high-excitation regime. Opt. Express 19, 14370 (2011)

    Article  ADS  Google Scholar 

  50. O. Benson, C. Santori, M. Pelton, Y. Yamamoto, Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000)

    Article  ADS  Google Scholar 

  51. W. Unrau, D. Quandt, J.H. Schulze, T. Heindel, T.D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U.W. Pohl, D. Bimberg, Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection. Appl. Phys. Lett. 101(21), 211119 (2012)

    Article  ADS  Google Scholar 

  52. G. Callsen, A. Carmele, G. Hönig, C. Kindel, J. Brunnmeier, M. Wagner, E. Stock, J.S. Reparaz, A. Schliwa, S. Reitzenstein, A. Knorr, A. Hoffmann, S. Kako, Y. Arakawa, Steering photon statistics in single quantum dots: from one- to two-photon emission. Phys. Rev. B 87, 245314 (2013)

    Article  ADS  Google Scholar 

  53. F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, Observing chaos for quantum-dot microlasers with external feedback. Nat. Commun. 2, 366 (2011)

    Article  ADS  Google Scholar 

  54. F. Schulze, B. Lingnau, S.M. Hein, A. Carmele, E. Schöll, K. Lüdge, A. Knorr, Feedback-induced steady-state light bunching above the lasing threshold. Phys. Rev. A 89, 041801(R) (2014)

    Article  ADS  Google Scholar 

  55. D. Lenstra, M. Yousefi, Rate-equation model for multi-mode semiconductor lasers with spatial hole burning. Opt. Express 22, 8143–8149 (2014)

    Article  ADS  Google Scholar 

  56. H. Kogelnik, C.V. Shank, Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43, 2327–2335 (1972)

    Article  ADS  Google Scholar 

  57. J. Minch, S.L. Chuang, C.S. Chang, W. Fang, Y.K. Chen, T. Tanbun-Ek, Theory and experiment on the amplified spontaneous emission from distributed-feedback lasers. IEEE J. Quantum Electron. 33, 815–823 (1997)

    Article  ADS  Google Scholar 

  58. M. Gioannini, M. Rossetti, Time-domain traveling wave model of quantum dot DFB lasers. IEEE J. Sel. Top. Quantum Electron. 17, 1318–1326 (2011)

    Article  Google Scholar 

  59. Y.Z. Huang, Z. Pan, R.H. Wu, Analysis of the optical confinement factor in semiconductor lasers. J. Appl. Phys. 79, 3827–3830 (1996)

    Article  ADS  Google Scholar 

  60. F. Salin, J. Squier, Gain guiding in solid-state lasers. Opt. Lett. 17, 1352–1354 (1992)

    Article  ADS  Google Scholar 

  61. N.J. van Druten, S.S.R. Oemrawsingh, Y. Lien, C. Serrat, M.P. van Exter, J.P. Woerdman, Observation of transverse modes in a microchip laser with combined gain and index guiding. J. Opt. Soc. Am. B 18, 1793–1804 (2001)

    Article  ADS  Google Scholar 

  62. M.O. Scully, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  63. H.C. Schneider, W.W. Chow, S.W. Koch, Many-body effects in the gain spectra of highly excited quantum dot lasers. Phys. Rev. B 64, 115315 (2001)

    Article  ADS  Google Scholar 

  64. B. Lingnau, K. Lüdge, E. Schöll, W.W. Chow, Many-body and nonequilibrium effects on relaxation oscillations in a quantum-dot microcavity laser. Appl. Phys. Lett. 97, 111102 (2010)

    Article  ADS  Google Scholar 

  65. P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87, 157401 (2001)

    Article  ADS  Google Scholar 

  66. H.C. Schneider, W.W. Chow, S.W. Koch, Excitation-induced dephasing in semiconductor quantum dots. Phys. Rev. B 70, 235308 (2004)

    Article  ADS  Google Scholar 

  67. H.H. Nilsson, J.Z. Zhang, I. Galbraith, Homogeneous broadening in quantum dots due to Auger scattering with wetting layer carriers. Phys. Rev. B 72, 205331 (2005)

    Article  ADS  Google Scholar 

  68. M. Lorke, J. Seebeck, T.R. Nielsen, P. Gartner, F. Jahnke, Excitation dependence of the homogeneous linewidths in quantum dots. Phys. Status Solidi (C) 3, 2393–2396 (2006)

    Article  ADS  Google Scholar 

  69. Q.T. Vu, H. Haug, S.W. Koch, Relaxation and dephasing quantum kinetics for a quantum dot in an optically excited quantum well. Phys. Rev. B 73, 205317 (2006)

    Article  ADS  Google Scholar 

  70. T. Koprucki, A. Wilms, A. Knorr, U. Bandelow, Modeling of quantum dot lasers with microscopic treatment of Coulomb effects. Opt. Quantum Electron. 42, 777–783 (2011)

    Article  Google Scholar 

  71. A. Schliwa, M. Winkelnkemper, D. Bimberg, Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As/GaAs quantum dots. Phys. Rev. B 76, 205324 (2007)

    Article  ADS  Google Scholar 

  72. W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)

    Article  ADS  MATH  Google Scholar 

  73. A. Beattie, P.T. Landsberg, Auger effect in semiconductors. Proc. R. Soc. A 249, 16–29 (1959)

    Article  ADS  Google Scholar 

  74. Y. Nambu, A. Tomita, H. Saito, K. Nishi, Effects of spectral broadening and cross relaxation on the gain saturation characteristics of quantum dot laser amplifiers. Jpn. J. Appl. Phys. 38, 5087 (1999)

    Article  ADS  Google Scholar 

  75. W. Lei, M. Offer, A. Lorke, C. Notthoff, C. Meier, O. Wibbelhoff, A.D. Wieck, Probing the band structure of InAs/GaAs quantum dots by capacitance-voltage and photoluminescence spectroscopy. Appl. Phys. Lett. 92, 193111 (2008)

    Article  ADS  Google Scholar 

  76. Y. Kaptan, A. Röhm, B. Herzog, B. Lingnau, H. Schmeckebier, D. Arsenijević, V. Mikhelashvili, O. Schops, M. Kolarczik, G. Eisenstein, D. Bimberg, U. Woggon, N. Owschimikow, K. Lüdge, Stability of a quantum dot excited state laser during simultaneous ground state amplification. Appl. Phys. Lett. 105, 191105-1–191105-4 (2014)

    Article  ADS  Google Scholar 

  77. Y. Kaptan, H. Schmeckebier, B. Herzog, D. Arsenijević, M. Kolarczik, V. Mikhelashvili, N. Owschimikow, G. Eisenstein, D. Bimberg, U. Woggon, Gain dynamics of quantum dot devices for dual-state operation. Appl. Phys. Lett. 104, 261108 (2014)

    Article  ADS  Google Scholar 

  78. P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Exciton relaxation and dephasing in quantum-dot amplifiers from room to cryogenic temperature. IEEE J. Sel. Top. Quantum Electron. 8, 984–991 (2002)

    Article  Google Scholar 

  79. A. Wilms, D. Breddermann, P. Mathe, Theory of direct capture from two- and three-dimensional reservoirs to quantum dot states. Phys. Status Solidi (C) 9, 1278–1280 (2012)

    Article  ADS  Google Scholar 

  80. R. Loudon, The Quantum Theory of Light (Oxford Science Publications, Oxford, 2000)

    MATH  Google Scholar 

  81. P. Gartner, J. Seebeck, F. Jahnke, Relaxation properties of the quantum kinetics of carrier-LO-phonon interaction in quantum wells and quantum dots. Phys. Rev. B 73, 115307 (2006)

    Article  ADS  Google Scholar 

  82. V. Flunkert, E. Schöll, Suppressing noise-induced intensity pulsations in semiconductor lasers by means of time-delayed feedback. Phys. Rev. E 76, 066202 (2007)

    Article  ADS  Google Scholar 

  83. Y. Liu, W.-C. Ng, K.D. Choquette, K. Hess, Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 41, 15–25 (2005)

    Article  ADS  Google Scholar 

  84. A.V. Uskov, E.P. O’Reilly, D. McPeake, D. Bimberg, G. Huyet, N.N. Ledentsov, Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states. Appl. Phys. Lett. 84, 272–274 (2004)

    Article  ADS  Google Scholar 

  85. X. Li, T. Wang, C. Dong, J. Tang, B. Liu, Y. He, Modified Drude model for free-carrier absorption due to bound-to-continuum transition in quantum-dot semiconductor optical amplifier. J. Appl. Phys. 114, 154506 (2013)

    Article  ADS  Google Scholar 

  86. D. Klotzkin, P. Bhattacharya, Temperature dependence of dynamic and DC characteristics of quantum-well and quantum-dot lasers: a comparative study. J. Lightwave Technol. 17, 1634 (1999)

    Article  ADS  Google Scholar 

  87. M.A. Cataluna, E.A. Viktorov, P. Mandel, W. Sibbett, D.A. Livshits, J. Weimert, A.R. Kovsh, E.U. Rafailov, Temperature dependence of pulse duration in a mode-locked quantum-dot laser. Appl. Phys. Lett. 90, 101102 (2007)

    Article  ADS  Google Scholar 

  88. Y. Arakawa, H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939 (1982)

    Article  ADS  Google Scholar 

  89. K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, Temperature-insensitive eye-opening under \(10\)-Gb/s modulation of 1.3 \(\upmu \)m p-doped quantum-dot lasers without current adjustments. Jpn. J. Appl. Phys. 43, L1124 (2004)

    Article  ADS  Google Scholar 

  90. K.T. Tan, C. Marinelli, M.G. Thompson, A. Wonfor, M. Silver, R.L. Sellin, R.V. Penty, I.H. White, M. Kuntz, M. Lämmlin, N.N. Ledentsov, D. Bimberg, A.E. Zhukov, V.M. Ustinov, A.R. Kovsh, High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers. IEEE Photonics Technol. Lett. 16, 1415 (2004)

    Article  ADS  Google Scholar 

  91. S.S. Mikhrin, A.R. Kovsh, I.L. Krestnikov, A.V. Kozhukhov, D.A. Livshits, N.N. Ledentsov, Y.M. Shernyakov, I.I. Novikov, M.V. Maximov, V.M. Ustinov, Z.I. Alferov, High power temperature-insensitive 1.3 \(\upmu \)m InAs/InGaAs/GaAs quantum dot lasers. Semicond. Sci. Technol. 20, 340–342 (2005)

    Article  ADS  Google Scholar 

  92. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, Y. Nakata, Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gbs directly modulated lasers and 40 Gbs signal-regenerative amplifiers. J. Phys. D 38, 2126–2134 (2005)

    Article  ADS  Google Scholar 

  93. O.B. Shchekin, G. Park, D.L. Huffaker, D.G. Deppe, Discrete energy level separation and the threshold temperature dependence of quantum dot lasers. Appl. Phys. Lett. 77(4), 466–468 (2000)

    Article  ADS  Google Scholar 

  94. J. Wang, H. Schweizer, A quantitative comparison of the classical rate-equation model with the carrier heating model on dynamics of the quantum-well laser: the role of carrier energy relaxation, electron-hole interaction, and Auger effect. IEEE J. Quantum Electron. 33, 1350–1359 (1997)

    Article  ADS  Google Scholar 

  95. A.V. Uskov, C. Meuer, H. Schmeckebier, D. Bimberg, Auger capture induced carrier heating in quantum dot lasers and amplifiers. Appl. Phys. Express 4, 022202 (2011)

    Article  ADS  Google Scholar 

  96. N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 99, 131102 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Lingnau .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lingnau, B. (2015). Theory of Quantum-Dot Optical Devices. In: Nonlinear and Nonequilibrium Dynamics of Quantum-Dot Optoelectronic Devices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-25805-8_2

Download citation

Publish with us

Policies and ethics