Part of the Springer Theses book series (Springer Theses)


Since their invention in 1960 [1] lasers have been the topic of great physical interest and have been contributing to almost every technological field.


Semiconductor Laser Semiconductor Optical Amplifier Relaxation Oscillation Vacant State Valence Band State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493 (1960)ADSCrossRefGoogle Scholar
  2. 2.
    D. Bimberg, Vom hässlichen Entlein zum Schwan—vor fünfzig Jahren wurde der Halbleiterlaser erfunden., Phys. J. Mai (2012)Google Scholar
  3. 3.
    J.J. Coleman, The development of the semiconductor laser diode after the first demonstration in 1962. Semicond. Sci. Technol. 27, 090207 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    M.J. Adams, J.V. Collins, I.D. Henning, Analysis of semiconductor laser optical amplifiers. IEE Proc. Optoelectron. 132, 58–63 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    M.J. O’Mahony, Semiconductor laser optical amplifiers for use in future fiber systems. J. Lightwave Technol. 6, 531–544 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    E. Schöll, Dynamic theory of picosecond optical pulse shaping by gain-switched semiconductor laser amplifiers. IEEE J. Quantum Electron. 24, 435–442 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    N.A. Olsson, Lightwave systems with optical amplifiers. J. Lightwave Technol. 7, 1071 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    I.P. Kaminow, E.H. Turner, Electrooptic light modulators. Appl. Opt. 5, 1612–1628 (1966)ADSCrossRefGoogle Scholar
  9. 9.
    M.N. Islam, R.L. Hillman, D.A.B. Miller, D.S. Chemla, A.C. Gossard, J.H. English, Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides. Appl. Phys. Lett. 50 (1987)Google Scholar
  10. 10.
    J.E. Zucker, T.L. Hendrickson, C.A. Burrus, Electro-optic phase modulation in GaAs/AlGaAs quantum well waveguides. Appl. Phys. Lett. 52 (1988)Google Scholar
  11. 11.
    D. Bimberg, D. Arsenijević, G. Larisch, H. Li, J.A. Lott, P. Moser, H. Schmeckebier, P. Wolf, Green nanophotonics for future datacom and ethernet networks. Proc. SPIE 9134, 913402–913 (2014)Google Scholar
  12. 12.
    T .D. Steiner, Semiconductor Nanostructures for Optoelectronic Applications, Semiconductor Materials and Devices Library (Artech House, Norwood, 2004)Google Scholar
  13. 13.
    E. Schöll, Nonequilibrium Phase Transitions in Semiconductors (Springer, Berlin, 1987)CrossRefGoogle Scholar
  14. 14.
    W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 1999)CrossRefzbMATHGoogle Scholar
  15. 15.
    M. Fox, Quantum Optics: An Introduction, vol. 15, Oxford master series in physics (Oxford University Press, Oxford, 2007)zbMATHGoogle Scholar
  16. 16.
    D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, B.A. Burrus, Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett. 53, 2173–2176 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    R. Loudon, The Quantum Theory of Light (Oxford Science Publications, Oxford, 2000)zbMATHGoogle Scholar
  18. 18.
    Z.I. Alferov, The history and future of semiconductor heterostructures from the point of view of a russian scientist. Phys. Scr. T68, 32 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    H. Kroemer, A proposed class of hetero-junction injection lasers. Proc. IEEE 51, 1782–1783 (1963)CrossRefGoogle Scholar
  20. 20.
    Z.I. Alferov, V.M. Andreev, V.I. Korolkov, E.L. Portnoi, D.N. Tretyakov, Coherent radiation of epitaxial heterojunction structures in the AlAs-GaAs system. Fiz. Tekh. Poluprovodn. 2, 1545–1547 (1968)Google Scholar
  21. 21.
    L. Larger, J.M. Dudley, Nonlinear dynamics: Optoelectronic chaos. Nature 465, 41–42 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    T. Erneux, P. Glorieux, Laser Dynamics (Cambridge University Press, Cambridge, 2010)CrossRefGoogle Scholar
  23. 23.
    K. Lüdge, in Nonlinear Laser Dynamics—From Quantum Dots to Cryptography, ed. by K. Lüdge (Wiley-VCH, Weinheim, 2012)Google Scholar
  24. 24.
    M.C. Soriano, J. García-Ojalvo, C.R. Mirasso, I. Fischer, Complex photonics: dynamics and applications of delay-coupled semiconductors lasers. Rev. Mod. Phys. 85, 421–470 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    G.H.M. van Tartwijk, D. Lenstra, Semiconductor laser with optical injection and feedback. Quantum Semiclass. Opt. 7, 87–143 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    S. Wieczorek, B. Krauskopf, T. Simpson, D. Lenstra, The dynamical complexity of optically injected semiconductor lasers. Phys. Rep. 416, 1–128 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    T. Heil, I. Fischer, W. Elsäßer, A. Gavrielides, Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. Phys. Rev. Lett. 87, 243901 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    C. Otto, Dynamics of Quantum Dot Lasers—Effects of Optical Feedback and External Optical Injection, Springer Theses (Springer, Heidelberg, 2014)Google Scholar
  29. 29.
    A. Gavrielides, V. Kovanis, P.M. Varangis, T. Erneux, G. Lythe, Coexisting periodic attractors in injection-locked diode lasers. Quantum Semiclass. Opt. 9, 785 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    G.H.M. van Tartwijk, G.P. Agrawal, Laser instabilities: a modern perspective. Prog. Quantum Electron. 22, 43–122 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    J. Ohtsubo, Feedback induced instability and chaos in semiconductor lasers and their applications. Opt. Rev. 6, 1–15 (1999)CrossRefGoogle Scholar
  32. 32.
    R. Dingle, W. Wiegmann, C.H. Henry, Quantum states of confined carriers in very thin Al\(_x\)Ga\(_{1-x}\)As-GaAs-Al\(_x\)Ga\(_{1-x}\)As heterostructures. Phys. Rev. Lett. 33, 827–830 (1974)ADSCrossRefGoogle Scholar
  33. 33.
    F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O.L. Gouezigou, J.G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.H. Duan, Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at \(1.55 \mu m\). IEEE J. Sel. Top. Quantum Electron. 13, 111 (2007)CrossRefGoogle Scholar
  34. 34.
    Y. Arakawa, H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939 (1982)ADSCrossRefGoogle Scholar
  35. 35.
    D. Bimberg, in Semiconductor Nanostructures, ed. by D. Bimberg (Springer, Berlin, 2008)Google Scholar
  36. 36.
    W.W. Chow, F. Jahnke, On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog. Quantum Electron. 37, 109–184 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    H. Hirayama, K. Matsunaga, M. Asada, Y. Suematsu, Lasing action of Ga\(_{0.67}\)In\(_{0.33}\)As/GaInAsP/InP tensile-strained quantum-box laser. Electron. Lett. 30, 142–143 (1994)Google Scholar
  38. 38.
    D. Bimberg, Quantum dot based nanophotonics and nanoelectronics. Electron. Lett. 44, 168 (2008)CrossRefGoogle Scholar
  39. 39.
    G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy (Academic Press, NewYork, 1989)Google Scholar
  40. 40.
    C. Priester, M. Lannoo, Origin of self-assembled quantum dots in highly mismatched heteroepitaxy. Phys. Rev. Lett. 75, 93 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    I.N. Stranski, L. Krastanow, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse IIb. Akad. Wiss. Wien 146, 797–810 (1938)Google Scholar
  42. 42.
    T. Walther, A.G. Cullis, D.J. Norris, M. Hopkinson, Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs. Phys. Rev. Lett. 86, 2381–2384 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations