Skip to main content

Image-Based Large-Scale Geo-localization in Mountainous Regions

  • Chapter
  • First Online:
Large-Scale Visual Geo-Localization

Abstract

Given a picture taken somewhere in the world, automatic geo-localization of such an image is an extremely useful task especially for historical and forensic sciences, documentation purposes, organization of the world’s photographs and intelligence applications. While tremendous progress has been made over the last years in visual location recognition within a single city, localization in natural environments is much more difficult, since vegetation, illumination, seasonal changes make appearance-only approaches impractical. In this chapter, we target mountainous terrain and use digital elevation models to extract representations for fast visual database lookup. We propose an automated approach for very large-scale visual localization that can efficiently exploit visual information (contours) and geometric constraints (consistent orientation) at the same time. We validate the system at the scale of Switzerland (\(40\,000\,\mathrm {km}^2\)) using over 1000 landscape query images with ground truth GPS position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A preliminary version of this system has been presented in [2].

  2. 2.

    http://www.swisstopo.admin.ch/internet/swisstopo/en/home.

  3. 3.

    http://openscenegraph.org.

  4. 4.

    Synthetic experiments verified that taking the photo from 10 or 50 m above the ground does not degrade recognition besides very special cases like standing very close to a small wall.

  5. 5.

    http://cvg.ethz.ch/research/mountain-localization.

References

  1. Baatz G, Köser K, Chen D, Grzeszczuk R, Pollefeys M (2012) Leveraging 3d city models for rotation invariant place-of-interest recognition. IJCV, special issue on mobile vision 96

    Google Scholar 

  2. Baatz G, Saurer O, Köser K, Pollefeys M (2012) Large scale visual geo-localization of images in mountainous terrain. In: Proceedings of the 12th european conference on computer vision - volume part II, ECCV’12, pp 517–530, Berlin, Heidelberg, 2012. Springer

    Google Scholar 

  3. Baboud L, Cadík M, Eisemann E, Seidel H.-P (2011) Automatic photo-to-terrain alignment for the annotation of mountain pictures. In: CVPR, pp 41–48

    Google Scholar 

  4. Blake A, Rother C, Brown M, Perez P, Torr P (2004) Interactive image segmentation using an adaptive gmmrf model. In: ECCV, pp 428–441

    Google Scholar 

  5. Brown M, Lowe DG (2007) Automatic panoramic image stitching using invariant features. Int J Comput Vis 74:59–73

    Google Scholar 

  6. Chen D, Baatz G, Köser K, Tsai S, Vedantham R, Pylvanainen T, Roimela K, Chen X, Bach J, Pollefeys M, Girod B, Grzeszczuk R (2011) City-scale landmark identification on mobile devices. In: CVPR

    Google Scholar 

  7. Comaniciu D, Meer P, Member S (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619

    Google Scholar 

  8. Cozman F (1997) Decision making based on convex sets of probability distributions: quasi-bayesian networks and outdoor visual position estimation. Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, December 1997

    Google Scholar 

  9. Cozman F, Krotkov E (1996) Position estimation from outdoor visual landmarks for teleoperation of lunar rovers. In: WACV‘96, pp 156–161

    Google Scholar 

  10. Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat

    Google Scholar 

  11. Hays J, Efros AA (2008) im2gps: estimating geographic information from a single image. In: Proceedings of CVPR 2008

    Google Scholar 

  12. Hussain SU, Triggs B (2012) Visual recognition using local quantized patterns. In: European conference on computer vision

    Google Scholar 

  13. Kolmogorov V, Boykov Y (2005) What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In: Proceedings of ICCV 2005, pp 564–571, Washington, DC, USA, 2005. IEEE Computer Society

    Google Scholar 

  14. Ladicky L, Russell C, Kohli P, Torr P (2014) Associative hierarchical random fields. IEEE Trans Pattern Anal Mach Intell, 36(6):1056–1077

    Google Scholar 

  15. Ladicky L, Zeisl B, Pollefeys M (2014) Discriminatively trained dense surface normal estimation. In: European conference on computer vision

    Google Scholar 

  16. Lalonde JF, Narasimhan SG, Efros AA (2010) What do the sun and the sky tell us about the camera? Int J Comput Vis 88(1):24–51

    Google Scholar 

  17. Li Y, Snavely N, Huttenlocher DP (2010) Location recognition using prioritized feature matching. In: Proceedings of the 11th european conference on computer vision: part II, ECCV’10, pp 791–804, Berlin, Heidelberg, 2010. Springer

    Google Scholar 

  18. Lie WN, Lin TCI, Lin TC, Hung KS (2005) A robust dynamic programming algorithm to extract skyline in images for navigation. Pattern Recog Lett 26(2):221–230

    Google Scholar 

  19. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Google Scholar 

  20. Malik J, Belongie S, Leung T, Shi J (2001) Contour and texture analysis for image segmentation. Int J Comput Vis 43(1):7–27

    Google Scholar 

  21. Manay S, Cremers D, Hong BW, Yezzi A, Soatto S (2006) Integral invariants for shape matching. Pattern Anal Mach Intell

    Google Scholar 

  22. Naval PC, Mukunoki M, Minoh M, Ikeda K (1997) Estimating camera position and orientation from geographical map and mountain image. In: 38th pattern sensing group research meeting, society of instrument and control engineers, pp 9–16

    Google Scholar 

  23. Nistér D, Stewénius H (2006) Scalable recognition with a vocabulary tree. In: CVPR (2), pp 2161–2168

    Google Scholar 

  24. Ramalingam S, Bouaziz S, Sturm P, Brand M (2010) Skyline2gps: localization in urban canyons using omni-skylines. In: IROS 2010, pp 3816–3823

    Google Scholar 

  25. Schindler G, Brown M, Szeliski R (2007) City-scale location recognition. Comput Vis Pattern Recog CVPR ’07, pp 1–7

    Google Scholar 

  26. Shechtman E, Irani M (2007) Matching local self-similarities across images and videos. In: Conference on computer vision and pattern recognition

    Google Scholar 

  27. Shotton J, Winn J, Rother C, Criminisi A (2006) Textonboost: joint appearance, shape and context modeling for multi-class object. In: IN ECCV, pp 1–15

    Google Scholar 

  28. Sivic J, Zisserman A (2003) Video Google: a text retrieval approach to object matching in videos. In: Proceedings ICCV 2003, vol 2, pp 1470–1477

    Google Scholar 

  29. Stein F, Medioni G (1995) Map-based localization using the panoramic horizon. IEEE Trans Robot Autom 11(6):892–896

    Google Scholar 

  30. Talluri R, Aggarwal J (1992) Position estimation for an autonomous mobile robot in an outdoor environment. Trans Robot Autom 8(5):573–584

    Google Scholar 

  31. Thompson WB, Henderson TC, Colvin TL, Dick LB, Valiquette CM (1993) Vision-based localization. In: Image understanding workshop, pp 491–498

    Google Scholar 

  32. Vasilevskiy A, Siddiqi K (2002) Flux maximizing geometric flows. IEEE Trans Pattern Anal Mach Intell 24:1565–1578

    Google Scholar 

  33. Woo J, Son K, Li T, Kim GS, Kweon IS (2007) Vision-based uav navigation in mountain area. In: MVA, pp 236–239

    Google Scholar 

  34. Yang M, Kpalma K, Ronsin J (2008) A survey of shape feature extraction techniques. In: Yin PY (ed) Pattern recognition, pp 43–90. IN-TECH, November 2008

    Google Scholar 

Download references

Acknowledgments

This work has been supported through SNF grant 127224 by the Swiss National Science Foundation. We also thank Simon Wenner for his help to render the DEMs and Hiroto Nagayoshi for providing the CH2 dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Saurer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saurer, O., Baatz, G., Köser, K., Ladický, L., Pollefeys, M. (2016). Image-Based Large-Scale Geo-localization in Mountainous Regions. In: Zamir, A., Hakeem, A., Van Gool, L., Shah, M., Szeliski, R. (eds) Large-Scale Visual Geo-Localization. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-25781-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25781-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25779-2

  • Online ISBN: 978-3-319-25781-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics