Skip to main content

3D Point Cloud Reduction Using Mixed-Integer Quadratic Programming

  • Chapter
  • First Online:
Large-Scale Visual Geo-Localization

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 1627 Accesses

Abstract

Large-scale 3D image localization requires computationally expensive matching between 2D feature points in the query image and a 3D point cloud. In this chapter, we present a method to accelerate the matching process and reduce the memory footprint by analyzing the view statistics of points in a training corpus. Given a training image set that is representative of common views of a scene, our approach identifies a compact subset of the 3D point cloud for efficient localization, while achieving comparable localization performance to using the full 3D point cloud. We demonstrate that the problem can be precisely formulated as a mixed-integer quadratic program and present a point-wise descriptor calibration process to improve matching. We show that our algorithm outperforms the state-of-the-art greedy algorithm on standard datasets, on measures of both point-cloud compression and localization accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.gurobi.com.

References

  1. Agarwal S, Snavely N, Simon I, Seitz S, Szeliski R (2009) Building Rome in a Day. In: ICCV

    Google Scholar 

  2. Baatz G, Saurer O, Köser K, Pollefeys M (2012) Large scale visual geo-localization of images in mountainous terrain. In: ECCV

    Google Scholar 

  3. Baatz G, Köser K, Chen D, Grzeszczuk R, Pollefeys M (2012) Handling urban location recognition as a 2D homothetic problem. In: ECCV

    Google Scholar 

  4. Chen D, Baatz G, Köser K, Tsai SS, Vedantham R, Pylvänäinen T, Roimela K, Chen X, Bach J, Pollefeys M, Girod B, Grzeszczuk R (2011) City-scale landmark identification on mobile devices. In: CVPR

    Google Scholar 

  5. Cozman F, Krotkov E (1995) Robot localization using a computer vision sextant. In: ICRA

    Google Scholar 

  6. Cummins M, Newman P (2008) FAB-MAP: probabilistic localization and mapping in the space of appearance. In: IJRR

    Google Scholar 

  7. Fischler MA, Bolles RC (1981) FAB-MAP: random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. In: Communications of the ACM

    Google Scholar 

  8. Frahm J-M, Georgel P, Gallup D, Johnson T, Raguram R, Wu C, Jen Y-H, Dunn E, Clipp B, Lazebnik S, Pollefeys M (2010) Building Rome on a cloudless day. In: ECCV

    Google Scholar 

  9. Havlena M, Torii A, Pajdla T (2010) Efficient structure from motion by graph optimization. In: ECCV

    Google Scholar 

  10. Hays J, Efros AA (2008) IM2GPS: estimating geographic information from a single image. In: CVPR

    Google Scholar 

  11. Irschara A, Zach C, Frahm J-M, Bischof H (2009) From structure-from-motion point clouds to fast location recognition. In: CVPR

    Google Scholar 

  12. Jacobs N, Satkin S, Roman N, Speyer R, Pless R (2007) Geolocating static cameras. In: ICCV

    Google Scholar 

  13. Kalogerakis E, Vesselova O, Hays J, Efros AA, Hertzmann A (2009) Image sequence geolocation with human travel priors. In: ICCV

    Google Scholar 

  14. Karp RM (1972) Reducibility among combinatorial problems. In: Complexity of computer computations

    Google Scholar 

  15. Sattler T, Leibe B, Kobbelt L (2011) Fast image-based localization using direct 2D-to-3D matching. In: ICCV

    Google Scholar 

  16. Choudhary S, Narayanan PJ (2012) Visibility probability structure from SfM datasets and applications. In: ECCV

    Google Scholar 

  17. Sattler T, Leibe B, Kobbelt L (2012) Improving image-based localization by active correspondence search. In: ECCV

    Google Scholar 

  18. Donoser M, Schmalstieg D (2014) Discriminative feature-to-point matching in image-based localization. In: CVPR

    Google Scholar 

  19. Cao S, Snavely N (2013) Graph-based discriminative learning for location recognition. In: CVPR

    Google Scholar 

  20. Lepetit V, Moreno-Noguer F, Fua P (2009) EPnP: an accurate O(n) solution to the PnP problem. In: IJCV

    Google Scholar 

  21. Li F, Kosecka J (2006) Probabilistic location recognition using reduced feature set. In: ICRA

    Google Scholar 

  22. Li X, Wu C, Zach C, Lazebnik S, Frahm J-M (2008) Probabilistic location recognition using reduced feature set. In: ECCV

    Google Scholar 

  23. Li Y, Snavely N, Huttenlocher D, Fua P (2012) Worldwide pose estimation using 3D point clouds. In: ECCV

    Google Scholar 

  24. Li Y, Snavely N, Huttenlocher D (2010) Location recognition using priotized feature matching. In: ECCV

    Google Scholar 

  25. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. In: IJCV

    Google Scholar 

  26. Ni K, Kannan A, Criminisi A, Winn J (2009) Epitomic location recognition. In: TPAMI

    Google Scholar 

  27. Nistér D, Stewénius H (2006) Scalable recognition with a vocabulary tree. In: CVPR

    Google Scholar 

  28. Olsson C, Eriksson AP, Kahl F (2007) Solving large scale binary quadratic problems: spectral methods vs. semidefinite programming. In: CVPR

    Google Scholar 

  29. Duncan R, Roberto C (2004) An image-based system for urban navigation. In: BMVC

    Google Scholar 

  30. Schindler G, Brown M, Szeliski R (2007) City-scale location recognition. In: ICCV

    Google Scholar 

  31. Se S, Lowe D, Little J (2002) Global localization using distinctive visual features. In: IROS

    Google Scholar 

  32. Simon I, Snavely N, Seitz SM (2007) Scene summarization for online image collections. In: ICCV

    Google Scholar 

  33. Snavely N, Seitz SM, Szeliski R (2006) Photo tourism: exploring photo collections in 3D. In: TOG(SIGGRAPH)

    Google Scholar 

  34. Snavely N, Seitz SM, Szeliski R (2008) Skeletal graphs for efficient structure from motion. In: CVPR

    Google Scholar 

  35. Torralba A, Murphy KP, Freeman WT, Rubin MA (2008) Context-based vision system for place and object recognition. In: ICCV

    Google Scholar 

  36. Zamir AR, Shah M (2010) Accurate image localization based on Google Maps street view. In: ECCV

    Google Scholar 

  37. Zhang W, Kosecka J (2006) Image based localization in urban environments. In: 3DPVT

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Soo Park or Yu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Park, H.S., Wang, Y., Nurvitadhi, E., Hoe, J.C., Sheikh, Y., Chen, M. (2016). 3D Point Cloud Reduction Using Mixed-Integer Quadratic Programming. In: Zamir, A., Hakeem, A., Van Gool, L., Shah, M., Szeliski, R. (eds) Large-Scale Visual Geo-Localization. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-25781-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25781-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25779-2

  • Online ISBN: 978-3-319-25781-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics