Skip to main content

Finite Element Approximation of an Unsteady Projection-Based VMS Turbulence Model with Wall Laws

  • Conference paper
  • First Online:
Boundary and Interior Layers, Computational and Asymptotic Methods - BAIL 2014

Abstract

In this work we present the numerical analysis and study the performance of a finite element projection-based Variational MultiScale (VMS) turbulence model that includes general non-linear wall laws. We introduce Lagrange finite element spaces adapted to approximate the slip condition. The sub-grid effects are modeled by an eddy diffusion term that acts only on a range of small resolved scales. Moreover, high-order stabilization terms are considered, with the double aim to guarantee stability for coarse meshes, and help to counter-balance the accumulation of sub-grid energy together with the sub-grid eddy viscosity term. We prove stability and convergence for solutions that only need to bear the natural minimal regularity, in unsteady regime. We also study the asymptotic energy balance of the system. We finally include some numerical tests to assess the performance of the model described in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, N., Chacón Rebollo, T., John, V., Rubino, S.: Analysis of a full space-time discretization of the Navier-Stokes equations by a local projection stabilization method. IMA J. Numer. Anal. (2015, Submitted). WIAS Preprint No. 2166

    Google Scholar 

  2. Akkerman, I.: Adaptive variational multiscale formulations using the discrete Germano approach. PhD thesis, Delft University of Technology (2009)

    Google Scholar 

  3. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Hughes, T.J.R., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197(1–4), 173–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazilevs, Y., Michler, C., Calo, V.M., Hughes, T.J.R.: Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput. Methods Appl. Mech. Eng. 196(49–52), 4853–4862 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bazilevs, Y., Michler, C., Calo, V.M., Hughes, T.J.R.: Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput. Methods Appl. Mech. Eng. 199(13–16), 780–790 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations variationnelles de problèmes aux limites elliptiques. Mathématiques & Applications, vol. 45. Springer, Berlin/Heidelberg (2004)

    Google Scholar 

  7. Berselli, L.C., Iliescu, T., Layton, W.J.: Mathematics of Large Eddy Simulation of Turbulent Flows. Scientific Computation. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Chacón Rebollo, T.: An analysis technique for stabilized finite element solution of incompressible flows. M2AN Math. Model. Numer. Anal. 35(1), 57–89 (2001)

    Google Scholar 

  9. Chacón Rebollo, T., Lewandowski, R.: A variational finite element model for large-eddy simulations of turbulent flows. Chin. Ann. Math. Ser. B 34(5), 667–682 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chacón Rebollo, T., Lewandowski, R.: Mathematical and Numerical Foundations of Turbulence Models and Applications. Birkhäuser, New York (2014)

    Book  MATH  Google Scholar 

  11. Chacón Rebollo, T., Gómez Mármol, M., Girault, V., Sánchez Muñoz, I.: A high order term-by-term stabilization solver for incompressible flow problems. IMA J. Numer. Anal. 33(3), 974–1007 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chacón Rebollo, T., Gómez Mármol, M., Rubino, S.: Derivation of the Smagorinsky model from a Galerkin discretization. In: Mascot11 Proceedings. IMACS Series in Computational and Applied Mathematics, Rome, Italy, vol. 17, pp. 61–70 (2013)

    Google Scholar 

  13. Chacón Rebollo, T., Gómez Mármol, M., Restelli, M.: Numerical analysis of penalty stabilized finite element discretizations of evolution Navier-Stokes equation. J. Sci. Comput. 61(1), 1–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chacón Rebollo, T., Hecht, F., Gómez Mármol, M., Orzetti, G., Rubino, S.: Numerical approximation of the Smagorinsky turbulence model applied to the primitive equations of the ocean. Math. Comput. Simul. 99, 54–70 (2014)

    Article  MathSciNet  Google Scholar 

  15. Chacón Rebollo, T., Gómez Mármol, M., Rubino, S.: Numerical analysis of a finite element projection-based VMS turbulence model with wall laws. Comput. Methods Appl. Mech. Eng. 285, 379–405 (2015)

    Article  MathSciNet  Google Scholar 

  16. Choi, H., Moin, P.: Effects of the computational time step on numerical solutions of turbulent flow. J. Comput. Phys. 113(1), 1–4 (1994)

    Article  MATH  Google Scholar 

  17. Codina, R.: Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Eng. 156(1–4), 185–210 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gravemeier, V.: Scale-separating operators for variational multiscale large eddy simulation of turbulent flows. J. Comput. Phys. 212(2), 400–435 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Horgan, C.O.: Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37(4), 491–511 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hughes, T.J.R., Feijóo, G.R., Mazzei, L., Quincy, J.-B.: The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1–2), 3–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hughes, T.J.R., Mazzei, L., Jansen, K.E.: Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3(1–2), 47–59 (2000)

    Article  MATH  Google Scholar 

  22. Hughes, T.J.R., Mazzei, L., Oberai, A.A., Wray, A.: The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence. Phys. Fluids 13(2), 505–512 (2001)

    Article  MATH  Google Scholar 

  23. Hughes, T.J.R., Oberai, A.A., Mazzei, L.: Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys. Fluids 13(6), 1784–1799 (2001)

    Article  MATH  Google Scholar 

  24. John, V., Kindl, A.: Numerical studies of finite element variational multiscale methods for turbulent flow simulations. Comput. Methods Appl. Mech. Eng. 199(13–16), 841–852 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. John, V., Kaya, S., Kindl, A.: Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity. J. Math. Anal. Appl. 344(2), 627–641 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jones, W.P., Wille, M.: Large eddy simulation of a jet in a cross-flow. In: 10th Symposium on Turbulent Shear Flows, Pennsylvania, vol 4, pp 1–6 (1995)

    Google Scholar 

  27. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (2002)

    MATH  Google Scholar 

  28. Manning, R.: On the flow of water in open channels and pipes. Trans. Inst. Civil Eng. Ireland 20, 161–207 (1891)

    Google Scholar 

  29. Moin, P., Kim, J.: Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341–377 (1982)

    Article  MATH  Google Scholar 

  30. Moser, R., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Re τ  = 590. Phys. Fluids 11(4), 943–945 (1999)

    Article  MATH  Google Scholar 

  31. Parés, C.: Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids. Appl. Anal. 43(3–4), 245–296 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Prandtl, L.: Über die ausgebildeten Turbulenz. Zeitschrift für angewandte Mathematik und Mechanik 5, 136–139 (1925)

    MATH  Google Scholar 

  33. Rubino, S.: Numerical modeling of turbulence by Richardson number-based and VMS models. PhD thesis, Univeristy of Seville (2014)

    Google Scholar 

  34. Scott, R.L., Zhang, S.: Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simon, J.: Compact sets in the space L p(0, T; B). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987)

    Google Scholar 

  36. Smagorinsky, J.: General circulation experiment with the primitive equations: I. The basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  37. Spalding, D.B.: A single formula for the “law of the wall”. J. Appl. Mech. 28(3), 455–458 (1961)

    Article  MATH  Google Scholar 

  38. Van Driest, E.R.: On turbulent flow near a wall. J. Aeronaut. Sci. 23(11), 1007–1011 (1956)

    Article  MATH  Google Scholar 

  39. Verfürth, R.: Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions. RAIRO Modél. Math. Anal. Numér. 19(3), 461–475 (1985)

    MathSciNet  MATH  Google Scholar 

  40. Verfürth, R.: Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. Numer. Math. 50(6), 697–721 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  41. Von Kármán, T.: Mechanische Ähnlichkeit und Turbulenz. Nachr. Ges. Wiss. Gottingen, Math. Phys. Klasse 58, 271–286 (1930)

    Google Scholar 

Download references

Acknowledgements

Research partially supported by the Spanish Government project MTM2012-36124-C02-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás Chacón Rebollo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rebollo, T.C., Mármol, M.G., Rubino, S. (2015). Finite Element Approximation of an Unsteady Projection-Based VMS Turbulence Model with Wall Laws. In: Knobloch, P. (eds) Boundary and Interior Layers, Computational and Asymptotic Methods - BAIL 2014. Lecture Notes in Computational Science and Engineering, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-319-25727-3_5

Download citation

Publish with us

Policies and ethics