Skip to main content
  • 723 Accesses

Abstract

In this chapter the model developed in Chap. 2 is extended to represent electrode arrays. The control procedures of Chaps. 3, 4 and 6 are then applied using locally linear models which embed a restricted stimulation subspace. Clinically feasible model identification procedures are proposed for this form to replace the identification method of Chap. 2 which is unsuitable for arrays due to the impracticality of manipulating each joint of the hand and wrist while measuring applied force. Finally, the robustness properties established in Chaps. 3 and 6 are extended to provide transparent robust performance margins for the electrode array scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Popović-Maneski, M. Kostic, G. Bijelic, T. Keller, S. Mitrovic, L. Konstantinovic, D.B. Popović, Multi-pad electrode for effective grasping: design. IEEE Trans. Neural Syst. Rehabil. Eng. 21(4), 648–654 (2013)

    Article  Google Scholar 

  2. S. Micera, T. Keller, M. Lawerence, M. Morari, D.B. Popović, Wearable neural prosthesis: restoration od sensory-motor function by transcutaneous electrical stimulation. IEEE Eng. Med. Biol. Mag. 29, 64–69 (2010)

    Google Scholar 

  3. B.W. Heller, A.J. Clarke, T.R. Good, T.J. Healey, S. Nair, E.J. Pratt, Automated setup of functional electrical stimulation for drop foot using a novel 64 channel prototype stimulator and electrode array: results from a gait-lab based study. Med. Eng. Phys. 35(1), 74–81 (2013)

    Article  Google Scholar 

  4. N.M. Malešević, L.Z.P. Maneski, V. Ilić, N. Jorgovanović, G. Bijelić, T. Keller, D.B. Popović, A multi-pad electrode based functional electrical stimulation system for restoration of grasp. J. Neuroeng. Rehabil. 9, 66 (2012)

    Article  Google Scholar 

  5. S.B. O’Dwyer, D.T. O’Keeffe, S. Coote, G.M. Lyons, An electrode configuration technique using an electrode matrix arrangement for FES-based upper arm rehabilitation systems. Med. Eng. Phys. 28, 166–176 (2006)

    Article  Google Scholar 

  6. W. Tsang, K. Singh, E. Fiume, Helping hand: an anatomically accurate inverse dynamics solution for unconstrained hand motion, in Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2005), pp. 319–328

    Google Scholar 

  7. C.T. Freeman, D. Tong, K. Meadmore, Z. Cai, E. Rogers, A.M. Hughes, J.H. Burridge, Phase-lead iterative learning control algorithms for functional electrical stimulation based stroke rehabilitation. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 225(6), 850–859 (2011)

    Google Scholar 

  8. C.T. Freeman, P.L. Lewin, E. Rogers, Further results on the experimental evaluation of iterative learning control algorithms for non-minimum-phase plants. Int. J. Control 80(4), 569–582 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Z. Cai, C.T. Freeman, P.L. Lewin, E. Rogers, Iterative learning control for a non-minimum phase plant based on a reference shift algorithm. Control Eng. Pract. 16(6), 633–643 (2008)

    Article  Google Scholar 

  10. D. Guillameta, J. Vitria, B. Schiele, Introducing a weighted non-negative matrix factorization for image classification. Pattern Recognit. Lett. 24(14), 2447–2454 (2003)

    Article  Google Scholar 

  11. A. d’Avella, P. Saltiel, E. Bizzi, Combinations of muscle synergies in the construction of a natural motor behavior. Neuroscience 6(3), 300–308 (2003)

    Google Scholar 

  12. C.T. Freeman, Electrode array-based electrical stimulation using ILC with restricted input subspace. Control Eng. Pract. 23(2), 32–43 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Freeman .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Freeman, C. (2016). Electrode Array Control Design. In: Control System Design for Electrical Stimulation in Upper Limb Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-319-25706-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25706-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25704-4

  • Online ISBN: 978-3-319-25706-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics