Skip to main content
  • 732 Accesses

Abstract

Many control techniques have been applied to assist upper limb movement using electrical stimulation. However in clinical trials with neurologically impaired participants the applied control schemes remain mostly open-loop, triggered (Davoodi et al., First International Conference on Neural Interface and Control, 2005, [1]), or based on electromyographic (EMG) (Li et al., Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2008, [2]), (Escobar et al., IEEE Lat Am Trans 8(1):17–22, 2010, [3]) or electroencephalographic (EEG) feedback (Pfurtscheller et al., EURASIP J Appl Signal Process 19:3152–3155, 2005, [4]), (Meng et al., IJCNN, 2008, [5]) to provide a measure of the users’ voluntary intention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Davoodi, M. Hauschild, J. Lee, P.T. Montazemi, G.E. Loeb, Biomimetic control of FES reaching, in First International Conference on Neural Interface and Control, May (2005),pp. 177–181

    Google Scholar 

  2. R. Li, X.L. Hu, K.Y. Tong, Combined electromyography (EMG)-driven system with functional electrical stimulation (FES) for poststroke rehabilitation, in Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (2008)

    Google Scholar 

  3. S.O. Escobar, J.M. Reta, C.B. Tabernig, Platform for evaluation of control strategies of functional stimulators through the EMG of the same stimulated muscle. IEEE Lat. Am. Trans. 8(1), 17–22 (2010)

    Article  Google Scholar 

  4. G. Pfurtscheller, G.R. Muller-Putz, J. Pfurtscheller, R. Rupp, EEG-based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient. EURASIP J. Appl. Signal Process. 19, 3152–3155 (2005)

    Article  Google Scholar 

  5. F. Meng, K. Tong, S. Chan, W. Wong, K. Lui, K. Tang, X. Gao, S. Gao, BCI-FES training system design and implementation for rehabilitation of stroke patients, in IJCNN (2008)

    Google Scholar 

  6. J.G. Hincapie, R.F. Kirsch, Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 17(1), 80–90 (2009)

    Article  Google Scholar 

  7. J.P. Giuffrida, P.E. Crago, Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller. IEEE Trans. Neural Syst. Rehabil. Eng. 13(2), 147–152 (2005)

    Article  Google Scholar 

  8. J.G. Hincapie, D. Blana, E.K. Chadwick, R.F. Kirsch, Musculoskeletal model-guided, customizable selection of shoulder and elbow muscles for a C5 SCI neuroprosthesis. Trans. Neural Syst. Rehabil. Eng. 16(3), 255–263 (2008)

    Article  Google Scholar 

  9. N. Sharma, C.M. Gregory, M. Johnson, W.E. Dixon, Closed-loop neural network-based NMES control for human limb tracking. Trans. Control Syst. Technol. 20(3), 712–725 (2012)

    Article  Google Scholar 

  10. Q. Wang, N. Sharma, M. Johnson, C.M. Gregory, W.E. Dixon, Adaptive inverse optimal neuromuscular electrical stimulation. Trans. Control Syst. Technol. 43(6), 1710–1718 (2013)

    Google Scholar 

  11. P.J. Olver, Applied mathematics lecture notes. Technical report (2012)

    Google Scholar 

  12. A. Isidori, Nonlinear Control Systems, 2nd edn. (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  13. D.W. Jordan, P. Smith, Nonlinear Ordinary Differential Equations, An Introduction to Dynamical Systems (Oxford University Press, Oxford, 2006)

    Google Scholar 

  14. C.L. Lynch, M.R. Popovic, Functional electrical stimulation: closed-loop control of induced muscle contractions. IEEE Control Syst. Mag. 28(2), 40–50 (2008)

    Article  MathSciNet  Google Scholar 

  15. C.T. Freeman, E. Rogers, A.M. Hughes, J.H. Burridge, K.L. Meadmore, Iterative learning control in healthcare: electrical stimulation and robotic-assisted upper limb stroke rehabilitation. IEEE Control Syst. Mag. 32(1), 18–43 (2012)

    Article  MathSciNet  Google Scholar 

  16. F. Le, I. Markovsky, C.T. Freeman, E. Rogers, Identification of electrically stimulated muscle models of stroke patients. Control Eng. Pract. 18(4), 396–407 (2010)

    Article  Google Scholar 

  17. J. Lin, P.P. Varaiya, Bounded-input bounded-output stability of nonlinear time-varying discrete control systems. IEEE Trans. Autom. Control 12(4), 423–427 (1967)

    Article  Google Scholar 

  18. T.T. Georgiou, M.C. Smith, Robustness analysis of nonlinear feedback systems: an input-output approach. IEEE Trans. Autom. Control 42(9), 1200–1221 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Al-Gburi, M. French, C.T. Freeman, Robustness analysis of nonlinear systems with feedback linearizing control, in 52nd IEEE Conference on Decision and Control (2013), pp. 3055–3060

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Freeman .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Freeman, C. (2016). Feedback Control Design. In: Control System Design for Electrical Stimulation in Upper Limb Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-319-25706-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25706-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25704-4

  • Online ISBN: 978-3-319-25706-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics