Skip to main content
  • 758 Accesses

Abstract

In this chapter a suitable model of the combined human arm and mechanical support is developed that has widespread application across upper limb rehabilitation. This representation will then be used in subsequent chapters for model-based controller development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Mehrholz, A. Hadrich, T. Platz, M. Pohl, Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. 6, CD006876 (2012)

    Google Scholar 

  2. P.S. Lum, C.G. Burgar, P.C. Shor, Evidence for improved muscle activation patterns after retraining of reaching movements with the mime robotic system in subjects with post-stroke hemiparesis. IEEE Trans. Neural Syst. Rehabil. Eng. 12(2), 186–194 (2004)

    Article  Google Scholar 

  3. J.R. de Kroon, J.H. van der Lee, M.J. Ijzerman, G.J. Lankhorst, Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clin. Rehabil. 16, 350–360 (2002)

    Article  Google Scholar 

  4. J.H. Burridge, M. Ladouceur, Clinical and therapeutic applications of neuromuscular stimulation: a review of current use and speculation into future developments. Neuromodulation 4(4), 147–154 (2001)

    Article  Google Scholar 

  5. E.K. Chadwick, D. Blana, A.J. van den Bogert, R.F. Kirsch, A real-time, 3-d musculoskeletal model for dynamic simulation of arm movements. IEEE Trans. Biomed. Eng. 56(4), 941–948 (2009)

    Article  Google Scholar 

  6. D. Blana, J.G. Hincapie, E.K. Chadwick, R.F. Kirsch, A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems. J. Biomech. 41, 1714–1721 (2008)

    Article  Google Scholar 

  7. D. Zhang, T.H. Guan, F. Widjaja, W.T. Ang, Functional electrical stimulation in rehabilitation engineering: a survey, in Proceedings of the 1st International Convention on Rehabilitation Engineering and Assistive Technology. ACM (2007), pp. 221–226

    Google Scholar 

  8. F.J. Valero-Cuevas, A mathematical approach to the mechanical capabilities of limbs and fingers. Prog. Mot. Control 629, 619–633 (2009)

    Article  Google Scholar 

  9. B. Doran, A.K. Thompson, R.B. Stein, Short-term effects of functional electrical stimulation on spinal excitatory and inhibitory reflexes in ankle extensor and flexor muscles. Exp. Brain Res. 170(2), 216–226 (2006)

    Article  Google Scholar 

  10. D. Zhang, W.T. Ang, Musculoskeletal models of tremor (chapter 5), Mechanisms and Emerging Therapies in Tremor Disorders (Springer Science & Business Media, Berlin, 2012), pp. 79–107

    Google Scholar 

  11. J. Bobet, E. Gossen, R. Stein, A comparison of models of force production during stimulated isometric ankle dorsiflexion in humans. IEEE Trans. Neural Syst. Rehabil. Eng. 13(4), 444–451 (2005)

    Article  Google Scholar 

  12. J. Bobet, R. Stein, A simple model of force generation by skeletal muscle during dynamic isometric contractions. IEEE Trans. Biomed. Eng. 45(8), 1010–1016 (1998)

    Article  Google Scholar 

  13. J. Ding, A.S. Wexler, S.A. Binder-Macleod, A mathematical model that predicts the force frequency relationship of human skeletal muscle. Muscle Nerve 26(4), 477–485 (2002)

    Article  Google Scholar 

  14. L.A. Law, R.K. Shields, Mathematical models of human paralyzed muscle after long-term training. J. Biomech. 40(12), 2587–2595 (2007)

    Article  Google Scholar 

  15. E.-W. Bai, Z. Cai, S. Dudley-Javoroskv, R.K. Shields, Identification of a modified Wiener-Hammerstein system and its application in electrically stimulated paralyzed skeletal muscle modeling. Automatica 45, 736–743 (2009)

    Article  MATH  Google Scholar 

  16. C.T. Freeman, Upper limb electrical stimulation using input-output linearization and iterative learning control. IEEE Trans. Control Syst. Technol. 23(4), 1546–1554 (2015)

    Article  Google Scholar 

  17. J. Yu, D.C. Ackland, M.G. Pandy, Shoulder muscle function depends on elbow joint position: an illustration of dynamic coupling in the upper limb. J. Biomech. 44(10), 1859–1868 (2011)

    Article  Google Scholar 

  18. C.T. Freeman, A.M. Hughes, J.H. Burridge, P.H. Chappell, P.L. Lewin, E. Rogers, A model of the upper extremity using FES for stroke rehabilitation. ASME J. Biomech. Eng. 131(3), 031006–1–031006–10 (2009)

    Article  Google Scholar 

  19. F. Le, I. Markovsky, C.T. Freeman, E. Rogers, Identification of electrically stimulated muscle models of stroke patients. Control Eng. Pract. 18(4), 396–407 (2010)

    Article  Google Scholar 

  20. W.K. Durfee, K.I. Palmer, Estimation of force-activation, force-length and force-velocity properties in isolated, electrically stimulated muscle. IEEE Trans. Biomed. Eng. 41(3), 205–216 (1994)

    Article  Google Scholar 

  21. D. Tong, Upper limb rehabilitation system using FES mediated by ILC. Ph.D. thesis, University of Southampton (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Freeman .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Freeman, C. (2016). Modeling and Identification. In: Control System Design for Electrical Stimulation in Upper Limb Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-319-25706-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25706-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25704-4

  • Online ISBN: 978-3-319-25706-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics