Skip to main content

Stochastic Buildings Generation to Assist in the Design of Right to Build Plans

  • Chapter
  • First Online:
Advances in 3D Geoinformation

Abstract

The design of documents impacting potential new constructions, such as Right to Build plans, is a complex issue. New tools need to be proposed in order to systematically assess the impact of regulations on the building potential of the concerned areas. Furthermore, it is often not directly the morphology of new constructions that administrations and citizens would like to regulate but their properties with regard to other phenomena (solar energy potential, etc.). In order to tackle these issues, we propose in this article to explore building configurations and regulations using a stochastic building generator and a workflow engine. The workflow we propose for such an exploration will produce important amounts of data that we intend to release as OpenData in order for administrations, urban planners and citizens to be able to freely visualize and collectively choose the regulations that best suit their territory. Such amount of 3D geographical data also suggests new issues in geovisualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    But other parametric objects can be used instead.

  2. 2.

    Or a urban block if simulations take into account new buildings from neighbor parcels.

  3. 3.

    Website of OpenMole project: http://www.openmole.org/.

  4. 4.

    Website of Simplu3D project: https://github.com/IGNF/simplu3D.

  5. 5.

    http://dataverse.org/.

References

  • Averkiou, M., Kim, V., Zheng, Y., & Mitra, N. J. (2014). Shapesynth: Parameterizing model collections for coupled shape exploration and synthesis. Computer Graphics Forum (Special issue of Eurographics 2014).

    Google Scholar 

  • Bao, F., Yan, D. -M., Mitra, N. J., & Wonka, P. (2013). Generating and exploring good building layouts. ACM Transactions on Graphics, 32(4).

    Google Scholar 

  • Brasebin, M. (2014). Les données géographiques 3D pour simuler l’impact de la réglementation urbaine sur la morphologie du bâti. Ph.D. thesis, Université Paris-Est.

    Google Scholar 

  • Brasebin, M., Perret, J., & Haëck, C. (2011). Towards a 3d geographic information system for the exploration of urban rules: application to the french local urban planning schemes. In 28th urban data management symposium (UDMS 2011).

    Google Scholar 

  • Coors, V., Hünlich, K., & On, G. (2009). Constraint-based generation and visualization of 3d city models. In J. Lee & S. Zlatanova (Eds.), 3D geo-information sciences (pp. 365–378)., Lecture notes in geoinformation and cartography Berlin Heidelberg: Springer.

    Google Scholar 

  • Covadis (2012). Standard de données covadisplan local d’urbanisme—plan d’occupation des sols plu et pos - version 2. Technical report, Commission de validation des données pour l’information spatialisée.

    Google Scholar 

  • El Makchouni, M. (1987). Un système graphique intelligent d’aide à la conception des plans d’occupation des sols: Sygripos. In 12th Urban Data Management Symposium.

    Google Scholar 

  • Frazer, J. (1995). An evolutionary architecture. Architectural Association: Themes Series.

    Google Scholar 

  • Green, P. J. (1995). Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika, 82(4), 711–732.

    Article  Google Scholar 

  • Gröger, G., & Plümer, L. (2012). Citygml—interoperable semantic 3d city models. ISPRS Journal of Photogrammetry and Remote Sensing, 71, 12–33.

    Article  Google Scholar 

  • He, S., Perret, J., Brasebin, M., & Brédif, M. (2014). A stochastic method for the generation of optimized building-layouts respecting urban regulation. In ISPRS/IGU Joint international conference on geospatial theory, processing, modelling and applications 2014, Advances in spatial data handling and analysis—Select Papers from the 16th IGU Spatial Data Handling Symposium.

    Google Scholar 

  • INSPIRE. (2009). D2.8.I.6 INSPIRE Data specification on cadastral parcels—Guidelines. Technical report.

    Google Scholar 

  • Kämpf, J. H., Montavon, M., Bunyesc, J., Bolliger, R., & Robinson, D. (2010). Optimisation of buildings’ solar irradiation availability. Solar Energy, 84(4), 596–603.

    Article  Google Scholar 

  • Kleiman, Y., Fish, N., Lanir, J., & Cohen-Or, D. (2013). Dynamic maps for exploring and browsing shapes. Computer Graphics Forum, 32(5).

    Google Scholar 

  • Laurini, R., & Vico, F. (1999). 3d symbolic visual simulation of building rule effects in urban master plans. In R. Shibasaki, & Z. Shi (Eds.) The second international workshop on Urban 3D/Multi-Media Mapping (UM3’99) (pp. 33–40).

    Google Scholar 

  • Michalewicz, Z. (1994). Evolutionary computation techniques for nonlinear programming problems. International Transactions of Operational Research, 1, 223–240.

    Article  Google Scholar 

  • Müller, P., Wonka, P., Haegler, S., Ulmer, A., & Van Gool, L. (2006). Procedural modeling of buildings. ACM Transactions on Graphics, 25(3), 614–623.

    Article  Google Scholar 

  • Murata, M. (2004). 3D-GIS application for urban planning based on 3D city model. In 24th Annual ESRI International User Conference (pp. 9–13).

    Google Scholar 

  • Papamichael, K. M., & Protzen, J. P. (1993). The limits of intelligence in design. In Focus Symposium on “Computer-Assisted Buildong Designs Systems”, of the Fourth International Symposium on System Research, Informatics and Cybernetics, Baden-Baden, Germany.

    Google Scholar 

  • Parish, Y. I. H., & Müller, P. (2001). Procedural modeling of cities. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’01 (pp. 301–308). New York, NY, USA: ACM.

    Google Scholar 

  • Perret, J., Curie, F., Gaffuri, J., & Ruas, A. (2010). A multi-agent system for the simulation of urban dynamics. In 10th European Conference on Complex Systems (ECCS’2010).

    Google Scholar 

  • Reuillon, R., Schmitt, C., De Aldama, R., & Mouret, J.- B. (2015). A new method to evaluate simulation models: the Calibration Profile (CP) algorithm a new method to evaluate simulation models: The Calibration Profile (CP) Algorithm. Journal of Artificial Societies and Social Simulation, 18(1). http://jasss.soc.surrey.ac.uk/18/1/12.html.

  • Ruas, A., Perret, J., Curie, F., Mas, A., Puissant, A., & Skupinski, G., et al. (2011). Conception of a gis-platform to simulate urban densification based on the analysis of topographic data. In A. Ruas (Ed.), Advances in Cartography and GIScience (Vol. 2, pp. 413–430), volume 6 of Lecture Notes in Geoinformation and Cartography Berlin, Heidelberg: Springer.

    Google Scholar 

  • Salamon, P., & Sibani, P. (2002). Frost, R. Selecting the Schedule, 13, 89–98.

    Google Scholar 

  • Talton, J. O., Lou, Y., Lesser, S., Duke, J., Měch, R., & Koltun, V. (2011). Metropolis procedural modeling. ACM Transactions on Graphics 30(2).

    Google Scholar 

  • Turkienicz, B., Goncalves, B., & Grazziotin, B. P. (2008). Cityzoom: A visualization tool for the assessment of planning regulations. International Journal of Architectural Computing, 6(1), 79–95.

    Article  Google Scholar 

  • Vanegas, C. A. (2013). Modeling the appearance and behavior of urban spaces. Ph.D. thesis, Purdue University.

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by the FEDER e-PLU projet (www.e-PLU.fr) and the Île-de-France Région.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickaël Brasebin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Brasebin, M., Perret, J., Reuillon, R. (2017). Stochastic Buildings Generation to Assist in the Design of Right to Build Plans. In: Abdul-Rahman, A. (eds) Advances in 3D Geoinformation. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-25691-7_21

Download citation

Publish with us

Policies and ethics