Skip to main content

Plants Shape the Terrestrial Environment on Earth: Challenges of Management for Sustainability

  • Chapter
  • First Online:
Progress in Botany 77

Part of the book series: Progress in Botany ((BOTANY,volume 77))

Abstract

Plants tend to occupy any suitable space available on Earth. They shape the inorganic terrestrial environment in a dynamic way through the geological ages. They affect the climate. They impact—with manifold kinds of biotic interactions—on the evolution of animals and microorganisms. They are the dominating primary producers of biomass on Earth and feed the other organisms. The Gaia concept of James Lovelock considers the entire biosphere as a supraorganism and postulates self-sustained stability. Plants play a major role in such self-management of nature. Natural self-management is juxtaposed with anthropogenic management, the former tending to sustain, the latter to exploit the biosphere. Anthropogenic management comprises agriculture and forestry. With relations to plants, the greatest challenge is intensified agriculture to feed 9.6 billion people by the year 2050. Faced with limited and declining resources, pollution, exploratory land use, sociopolitical ideologies, and by unavoidably contributing to some of these problems itself, agriculture is running into vicious cycles. Can agriculture and forestry learn from ecology? To which extent can ecological principles be introduced to them for securing sustained stability of productivity? Man assumes he “is the possessor of the planet, if not the owner,” rather than the “tenant.” Conversely, “the Gaia hypothesis implies that the stable state of our planet includes man as a part of, or partner in, a very democratic entity” (Lovelock, Gaia: A new look at life on Earth. Oxford University Press, Oxford, 1979). Can natural self-management and anthropogenic management be harmonized, given that mankind learns to conceive itself as part rather than owner of nature?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.emscherlandschaftspark.de

  2. 2.

    http://www.metropoleruhr.de/tr/freizeit-sport/natur-erleben/route-industrie

  3. 3.

    Wird derhalben die größte Kunst, Wissenschaft, Fleiß und Einrichtung hiesiger Lande darinnen beruhen, wie eine sothane Conservation und Anbau des Holtzes anzustellen, daß es eine continuirliche beständige und nachhaltende Nutzung gebe, weiln es eine unentbehrliche Sache ist, ohne welche das Land in seinem Esse nicht bleiben mag.

References

  • Ainsworth EA, Rogers A, Leakey DB (2008) Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiol 147:13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altieri M (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • Amzallag GN (2001) Data analysis in plant physiology: are we missing the reality? Plant Cell Environ 24:881–890

    Article  CAS  Google Scholar 

  • Andow DA (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586

    Article  Google Scholar 

  • Atsatt PR, O’Dowd DJ (1976) Plant defense guilds. Science 193:24–29

    Article  CAS  PubMed  Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Bedoussac L, Justes E (2010) The efficiency of durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant Soil 330:19–35

    Article  CAS  Google Scholar 

  • Bertness MD, Callaway RM (1994) Positive interactions in communities. Trend Ecol Evol 9:191–193

    Article  CAS  Google Scholar 

  • Blüthgen N, Klein A-M (2011) Functional complementarity and specialization: the role of biodiversity in plant pollinator interactions. Basic Appl Ecol 12:282–291

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Brooker RW, Maestre MT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present and the future. J Ecol 96:18–34

    Article  Google Scholar 

  • Brookes G, Barfoot P (2006) Global impact of biotech crops: socio-economic and environmental effects in the first years of commercial use. Ag Bio Forum 9:139–151

    Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125

    Article  Google Scholar 

  • Bruns HA (2014) Stacked gene hybrids were not found to be superior to glyphosate-resistant or non-GMO corn hybrids. Crop Manag 13. doi:10.2134/CM-2013-0012-RS

    Google Scholar 

  • Bünnemann EK, Oberson A, Frossard E (eds) (2011) Phosphorus in action: biological processes in soil phosphorus cycling, vol 26, Soil biology. Springer, Heidelberg

    Google Scholar 

  • Cahill JF (2013) Plant competition: can understanding trait-behavior linkages offer a new perspective on very old questions? In: Matyssek R, Lüttge U, Rennenberg H (eds) The alternatives growth and defense: resource allocation at multiple scales in plants. Nova Acta Leopoldina 114(391): 115–125

    Google Scholar 

  • Caldwell MM, Richards JH (1989) Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79:1–5

    Article  Google Scholar 

  • Callaway RM (1995) Positive interactions among plants. Bot Rev 61:306–349

    Article  Google Scholar 

  • Callaway RM (1998) Competition and facilitation on elevation gradients in subalpine forests of the northern Rocky Mountains, USA. Oikos 82:561–573

    Article  Google Scholar 

  • Callaway RM (2013) Facilitation, competition and the organization of plant communities. In: Matyssek R, Lüttge U, Rennenberg H (eds) The alternatives growth and defense: resource allocation at multiple scales in plants. Nova Acta Leopoldina 114(391): 147–157

    Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    Article  CAS  PubMed  Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965

    Article  Google Scholar 

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457

    Article  CAS  PubMed  Google Scholar 

  • Caprez R, Spehn E, Nakhutrishvili G, Körner C (2012) Drought at erosion edges selects for a “hidden” keystone species. Plant Ecol Divers. doi:10.1080/17550874.2011.600343

    Google Scholar 

  • Cassman KG, Liska AJ (2007) Food and Fuel for all: realistic or foolish? Biofuel Bioprod Bior 1:18–23

    Article  CAS  Google Scholar 

  • Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cisse L, Mrabet T (2004) World phosphate production: overview and prospects. Phosphorus Res Bull 15:212–225

    Article  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 9:292–305

    Article  Google Scholar 

  • Cottingham KL, Brown BL, Lennon JT (2001) Biodiversity may regulate the temporal variability of ecological systems. Ecol Lett 4:72–85

    Article  Google Scholar 

  • Dangles O, Herrera M, Anthelme F (2013) Experimental support of the stress-gradient hypothesis in herbivore-herbivore interactions. New Phytol 197:405–408

    Article  PubMed  Google Scholar 

  • Da Silva MC Jr, Scarano FR, De Souza CF (1995) Regeneration of an Atlantic forest formation in the understory of an Eucalyptus grandis plantation in south-eastern. Brazil J Trop Ecol 11:147–152

    Article  Google Scholar 

  • Davies TW, Jenkins SR, Kingham R, Hawkins SJ, Hiddink JG (2012) Extirpation-resistant species do not always compensate for the decline in ecosystem processes associated with biodiversity loss. J Ecol 100:1475–1481

    Article  Google Scholar 

  • Del Río M, Schütze G, Pretzsch H (2014) Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biol 16:166–176

    Article  PubMed  Google Scholar 

  • Dias ATC, Scarano FR (2007) Clusia as nurse plant. In: Lüttge U (ed) Clusia—a woody neotropical genus with remarkable plasticity and diversity. Springer, Heidelberg, pp 55–72

    Google Scholar 

  • Dias ATC, Bozelli RL, Darigo RM, Esteves FA, Santos HF, Figueiredo-Barros MP, Nunes MFQS, Roland F, Zamith LR, Scarano FR (2012) Rehabilitation of a bauxite tailing substrate in Central Amazonia: the effect of litter and seed addition on flood-prone forest restoration. Restor Ecol 20:483–489

    Article  Google Scholar 

  • Duarte HM, Gessler A, Scarano FR, Franco AC, de Mattos EA, Nahm M, Rennenberg H, Rodrigues PJFP, Zaluar HLT, Lüttge U (2005) Ecophysiology of six selected shrub species in different plant communities at the periphery of the Atlantic Forest of SE—Brazil. Flora 200:456–476

    Article  Google Scholar 

  • Durka W, Schulze E-D, Gebauer G, Voerkeliust S (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–767

    Article  CAS  Google Scholar 

  • Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci USA 98:13763–13768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Book  Google Scholar 

  • Fetene M, Beck E (2004) Water relations of indigenous versus exotic tree species, growing at the same site in a tropical montane forest in southern Ethiopia. Trees 18:428–435

    Article  Google Scholar 

  • Feyera S, Beck E, Lüttge U (2002) Exotic trees as nurse-trees for the regeneration of natural tropical forests. Trees 16:245–249

    Article  Google Scholar 

  • Franco AC, Nobel PS (1989) Effect of nurse plants on the microhabitat and growth of cacti. J Ecol 77:870–886

    Article  Google Scholar 

  • Fründ J, Linsenmair KE, Blüthgen N (2010) Pollinator diversity and specialization in relation to flower diversity. Oikos 119:1581–1590

    Article  Google Scholar 

  • Gehrig H, Gaussmann O, Marx H, Schwarzott D, Kluge M (2001) Molecular phylogeny of the genus Kalanchoë (Crassulaceae) inferred from the nucleotide sequences of the IST-1 and IST-2 regions. Plant Sci 160:827–835

    Article  CAS  PubMed  Google Scholar 

  • Geldenhuys CJ (1997) Native forest regeneration in pine and eucalypt plantations in Northern Province, South Africa. For Ecol Manag 99:101–115

    Article  Google Scholar 

  • Gould JG (2002) The structure of evolutionary theory. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Grams TEE (2013) A space-related perspective on plant-plant competition. In: Matyssek R, Lüttge U, Rennenberg H (eds) The alternatives growth and defense: resource allocation at multiple scales in plants. Nova Acta Leopoldina 114(391): 127–134

    Google Scholar 

  • Grams TEE, Lüttge U (2011) Space as a resource. Prog Bot 72:349–370

    Article  CAS  Google Scholar 

  • Grams TEE, Daigo MJ, Winkler JB, Gayler S, Matyssek R (2012) Growth and space use in competitive interactions between juvenile trees. In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch JC, Pretzsch H (eds) Growth and defence in plants. Resource allocation at multiple scales, vol 220, Ecological studies. Springer, Heidelberg, pp 273–286

    Chapter  Google Scholar 

  • Grünhage L, Matyssek R, Wieser G, Häberle K-H, Leuchner M, Menzel A, Dieler J, Pretzsch H, Grimmeisen W, Zimmermann L, Raspe S, Schröder M (2013) Flux based ozone risk assessment for adult beech and spruce forests. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Understanding and perspectives from forest research, vol 13, Developments in environmental sciences. Elsevier, Amsterdam, pp 251–266

    Chapter  Google Scholar 

  • Haberl H, Körner C, Lauk C, Schmid-Staiger U, Smetacek V, Schulze E-D, Thauer RK, Weiland P, Wilson K (2012) The availability and sustainability of biomass as an energy source. In: Bioenergy—chances and limits. German National Academy of Sciences Leopoldina, Halle (Saale), www.leopoldina.org, pp 9–42

  • Hastings A, Byers JE, Crooks JA, Cuddington K, Jones CG, Lambrinos JG, Talley TS, Wilson WG (2006) Ecosystem engineering in space and time. Ecol Lett 10:153–164

    Article  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze E-D, Siamantziouras A-SD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    Article  CAS  PubMed  Google Scholar 

  • Hibberd JM, Sheehy JE, Langdale JA (2008) Using C4 photosynthesis to increase the yield of rice—rationale and feasibility. Curr Opin Plant Biol 11:228–231

    Article  CAS  PubMed  Google Scholar 

  • Hodge A (2009) Root decisions. Plant Cell Environ 32:628–640

    Article  PubMed  Google Scholar 

  • Hodge A (2010) Roots: the acquisition of water and nutrients from the heterogeneous soil environment. Prog Bot 71:307–337

    Article  CAS  Google Scholar 

  • Höök M, Li J, Oba N, Snowden S (2011) Descriptive and predictive growth curves in energy system analysis. Nat Resour Res 20:103–116

    Article  CAS  Google Scholar 

  • Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecol Monogr 68:121–149

    Article  Google Scholar 

  • Huck C, Körner C, Hitbrunner E (2013) Plant species dominance shifts across erosion edge-meadow grassland soils. Oecologia 171:693–703

    Article  PubMed  Google Scholar 

  • Hütt M-T, Lüttge U (2005) Network dynamics in plant biology: current progress in historical perspective. Prog Bot 66:277–310

    Article  Google Scholar 

  • Keenan R, Lamb D, Woldring O, Irvine T, Jensen R (1997) Restoration of plant biodiversity beneath tropical tree plantations in Northern Australia. For Ecol Manag 99:117–131

    Article  Google Scholar 

  • King J, Liu L, Aspinwall M (2013) Tree and forest responses to interacting elevated atmospheric CO2 and tropospheric O3: a synthesis of experimental evidence. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Understanding and perspectives from forest research, vol 13, Developments in environmental sciences. Elsevier, Amsterdam, pp 179–208

    Chapter  Google Scholar 

  • Knoke T, Hahn A (2013) Global change and the role of forests in future land-use systems. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Elsevier, Amsterdam, pp 569–588

    Google Scholar 

  • Körner C (2012) Biological diversity—the essence of life and ecosystem functioning. Nova Acta Leopoldina 116(394):147–159

    Google Scholar 

  • Körner C (2013) Growth controls photosynthesis—mostly. Nova Acta Leopoldina 114(391):273–283

    Google Scholar 

  • Kraft G (1884) Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Klindworth’s Verlag, Hannover

    Google Scholar 

  • Küppers M (1989) Ecological significance of above-ground architectural patterns in woody plants—a question of cost-benefit relationships. Trends Ecol Evol 4:375–379

    Article  PubMed  Google Scholar 

  • Lacerda LD, Araujo DSD, Maciel NC (1993) Dry coastal ecosystems of the tropical Brazilian coast. In: van der Maarel E (ed) Dry coastal ecosystems: Africa; America, Asia and Oceania. Elsevier, Amsterdam, pp 477–493

    Google Scholar 

  • Lemenih M, Teketay D (2004) Restoration of native forest flora in the degraded highlands of Ethiopia: constraints and opportunities. Sinet Ethiop J Sci 27:75–90

    Google Scholar 

  • Leopoldina (2012) Bioenergy—chances and limits. German National Academy of Sciences Leopoldina, Halle (Saale),www.leopoldina.org

    Google Scholar 

  • Li L, Tilman D, Lambers H, Zhang F-S (2014) Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol 203:63–69

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Berger U, Grimm V, Ji Q-R (2012) Differences between symmetric and asymmetric facilitation matter: exploring the interplay between modes of positive and negative plant interactions. J Ecol 100:1482–1491

    Article  Google Scholar 

  • Long S, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13:241–248

    Article  PubMed  Google Scholar 

  • Lovelock J (1979) Gaia. A new look at life on Earth. Oxford University Press, Oxford

    Google Scholar 

  • Lovelock J (2009) The vanishing face of Gaia—a final warning. Basic Books, New York, NY

    Google Scholar 

  • Lüttge U (1995a) Ecophysiological basis of the diversity of tropical plants: the example of the genus Clusia. In: Heinen HD, San José JJ, Caballero-Arias H (eds) Nature and human ecology in the neotropics. Scientia Guaianae 5:23–26

    Google Scholar 

  • Lüttge U (1995b) Clusia: Ein Modellfall der ökologischen Plastizität in einer tropischen Gattung. In: Rundgespräche der Kommission für Ökologie BAdW. 10: 173–186. Bayerische Tropenforschung einst und jetzt. Dr. Pfeil München

    Google Scholar 

  • Lüttge U (2000) Photosynthese-Physiotypen unter gleichen Morphotypen, Spezies und bei Klonen: Kann ökophysiologische Plastizität zur Entstehung von Diversität beitragen? Ber Reinhold Tüxen Ges 12:319–334

    Google Scholar 

  • Lüttge U (2005) Genotypes—phenotypes—ecotypes: relations to crassulacean acid metabolism. Nova Acta Leopoldina 92(342):177–193

    Google Scholar 

  • Lüttge U (2008) Physiological ecology of tropical plants, 2nd edn. Springer, Berlin

    Google Scholar 

  • Lüttge U (2010) Struggle of plants with crassulacean acid metabolism (CAM) in topical environments under the action of dynamic networks of stressors. AoB PLANTS, 2010: 1–15. doi:10.1093/aobpla/plq005. http://aobplants.oxfordjournals.org/

  • Lüttge U (2013) The planet Earth: can it feed nine billion people? Nova Acta Leopoldina 114(391):345–364

    Google Scholar 

  • Lüttge U, Scarano FR (2004) Ecophysiology. Rev Bras Bot 27:1–10

    Article  Google Scholar 

  • Lüttge U, Scarano FR (2007) Synecological comparisons sustained by ecophysiological fingerprinting of intrinsic photosynthetic capacity of plants as assessed by measurements of light response curves. Braz J Bot 30:355–364

    Article  Google Scholar 

  • Lüttge U, Berg A, Fetene M, Nauke P, Peter D, Beck E (2003) Comparative characterization of photosynthetic performance and water relations of native trees and exotic plantation trees in an Ethiopian forest. Trees 17:40–50

    Article  CAS  Google Scholar 

  • Lüttge U, Garbin ML, Scarano FR (2013) Evo-devo-eco and ecological stem species: potential repair systems in the planetary biosphere crisis. Prog Bot 74:191–212

    Article  Google Scholar 

  • Lüttge U, Kluge M, Thiel G (2010) Botanik. Die umfassende Biologie der Pflanzen. Wiley-VCH, Weinheim

    Google Scholar 

  • Luyssaert S, Schulze E-D, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213–215

    Article  CAS  PubMed  Google Scholar 

  • Maeder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  Google Scholar 

  • Magnússon B, Magnússon SH, Fridriksson S (2009) Developments in plant colonization and succession on Surtsey during 1999–2008. Surtsey Res 12:57–76

    Google Scholar 

  • Masselter T, Bauer G, Gallenmüller F, Haushahn T, Poppinga S, Schmitt C, Seidel R, Speck O, Thielen M, Speck T (2012) Biomimetic products. In: Bar-Cohen Y (ed) Biomimetics. Nature-based innovation. CRC-Press, Boca Raton, FL, pp 377–429

    Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Lüttge U (2013) Gaia: the planet holobiont. Nova Acta Leopoldina 114(391):325–344

    Google Scholar 

  • Matyssek R, Fromm J, Rennenberg H, Roloff A (2010) Biologie der Bäume. Ulmer, Stuttgart

    Google Scholar 

  • Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) (2013a) Climate change, air pollution and global challenges. Understanding and perspectives from forest research, vol 13, Developments in environmental sciences. Elsevier, Amsterdam

    Google Scholar 

  • Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (2013b) Climate change, air pollution and global challenges: understanding and perspectives from forest research. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Understanding and perspectives from forest research, vol 13, Developments in environmental sciences. Elsevier, Amsterdam, pp 3–16

    Chapter  Google Scholar 

  • Matyssek R, Wieser G, Fleischmann F, Grünhage L (2013c) Ozone research, quo vadis? Lessons from the free-air canopy fumigation experiment at Kranzberg Forest. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Understanding and perspectives from forest research, vol 13, Developments in environmental sciences. Elsevier, Amsterdam, pp 103–129

    Chapter  Google Scholar 

  • Medina E, Cram WJ, Lee HSJ, Lüttge U, Popp M, Smith JAC, Diaz M (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. I. Site description and plant communities. New Phytol 111:233–243

    Article  Google Scholar 

  • Mitchell PL, Sheehy JE (2006) Supercharging rice photosynthesis to increase yield. New Phytol 171:688–693

    Article  CAS  PubMed  Google Scholar 

  • Novoplansky A (2009) Picking battles wisely: plant behaviour under competition. Plant Cell Environ 32:726–741

    Article  PubMed  Google Scholar 

  • Oberson A, Pypers P, Bünemann EK, Frossard E (2011) Management impacts on biological phosphorus cycling in cropped soils. In: Bünnemann EK, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling, vol 26, Soil biology. Springer, Heidelberg, pp 431–458

    Chapter  Google Scholar 

  • Oksanen E, Keski-Saari S, Kontunen-Soppela S, Keinänen M (2013) Metabolomics and transcriptomics increase our understanding about defence responses and genotypic differences of northern deciduous trees to elevating ozone, CO2 and climate warming. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Understanding and perspectives from forest research, vol 13, Developments in environmental sciences. Elsevier, Amsterdam, pp 309–329

    Chapter  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • Pandey V, Oksanen E, Singh N, Sharma C (2013) Impacts of air pollution and climate change on plants: implications for India. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Understanding and perspectives from forest research, vol 13, Developments in environmental sciences. Elsevier, Amsterdam, pp 391–409

    Chapter  Google Scholar 

  • Parrotta JA (1993) Secondary forest regeneration on degraded tropical lands. The role of plantations as “foster ecosystems”. In: Lieth H, Lohmann M (eds) Restoration of tropical forest ecosystems. Kluver, Dordrecht, pp 66–73

    Google Scholar 

  • Parrotta JA (1995) Influence of overstory composition on understory colonization by native species in plantations on a degraded tropical site. J Veg Sci 6:627–636

    Article  Google Scholar 

  • Pretzsch H (2010) Forest dynamics, growth and yield. Springer, Heidelberg

    Book  Google Scholar 

  • Pretzsch H (2013) Facilitation and competition in mixed-species forests analyzed along an ecological gradient. Nova Acta Leopoldina 114(391):159–174

    Google Scholar 

  • Pretzsch H, Roetzer T, Matyssek R, Grams TEE, Häberle K-H, Pritsch K (2014) Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: from reaction pattern to mechanisms. Trees 28:1305–1321

    Article  CAS  Google Scholar 

  • Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence for stress release by inter-specific facilitation. Plant Biol 15:483–495

    Article  CAS  PubMed  Google Scholar 

  • Que Q, Chilton M-DM, de Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L (2010) Trait stacking in transgenic crops: challenges and opportunities. GM Crops 1:220–229

    Article  PubMed  Google Scholar 

  • Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1918

    Article  CAS  PubMed  Google Scholar 

  • Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30:1192–1208

    Article  PubMed  Google Scholar 

  • Richards JH, Caldwell MM (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489

    Article  Google Scholar 

  • Sage RF, Zhu X-G (2011) Exploiting the engine of C4 photosynthesis. J Exp Bot 62:2989–3000

    Article  CAS  PubMed  Google Scholar 

  • Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rain forest. Ann Bot 90:517–524

    Article  PubMed  PubMed Central  Google Scholar 

  • Scarano FR (2009) Plant communities at the periphery of the Atlantic rain forest: rare-species bias and its risks for conservation. Biol Conserv 142:1201–1208

    Article  Google Scholar 

  • Scarano FR, Rios RI, Esteves FA (1998) Tree species richness, diversity and flooding regime: case studies of recuperation after anthropic impact in Brazilian flood-prone forests. Int J Ecol Environ Sci 24:223–225

    Google Scholar 

  • Schenk HJ (2006) Root competition beyond resource depletion. J Ecol 94:725–739

    Article  Google Scholar 

  • Scherer-Lorenzen M, Körner C, Schulze E-D (eds) (2005) Forest diversity and function. Temperate and boreal systems, vol 176, Ecological studies. Springer, Berlin

    Google Scholar 

  • Scherrer D, Bader MKF, Körner C (2011) Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agric For Meteorol 151:1632–1640

    Article  Google Scholar 

  • Schläpfer F, Schmid B (1999) Ecosystem effects of biodiversity: a classification of hypotheses and exploration of empirical results. Ecol Appl 9:893–912

    Article  Google Scholar 

  • Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Natl Acad Sci USA 106:15594–15598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze E-D, Körner C (2012) Nettoprimärproduktion und Bioenergie. In: Bioenergy—chances and limits. German National Academy of Sciences Leopoldina, Halle (Saale), www.leopoldina.org, pp 90–100

  • Solbrig OT (1994) Plant traits and adaptive strategies: their role in ecosystem function. In: Schulze E-D, Mooney HA (eds) Biodiversity and ecosystem function, vol 99, Ecological studies. Springer, Berlin, pp 97–116

    Chapter  Google Scholar 

  • Souza GM, Lüttge U (2014) Stability as a phenomenon emergent from plasticity—complexity—diversity in eco-physiology. Prog Bot 76:211–239

    Article  Google Scholar 

  • Souza GM, Ribeiro RV, Prado CHBS, Damineli DSC, Sato M, Oliveira MS (2009) Using network connectance and autonomy analyses to uncover patterns of photosynthetic responses in tropical woody species. Ecol Complex 6:15–26

    Article  Google Scholar 

  • Speck T, Bauer G, Flues F, Oelker K, Rampf K, Schüssele AC, von Tapavicza M, Bertling J, Luchgsinger R, Nellesen A, Schmidt AM, Mühlhaupt R, Speck O (2013a) Bio-inspired self-healing materials. In: Fratzl P, Dunlop JWC, Weinkamer R (eds) RSC Smart materials No. 4. Materials design inspired by nature: function through inner architecture. The Royal Society of Chemistry, pp 359–389

    Google Scholar 

  • Speck T, Mühlhaupt R, Speck O (2013b) Self-healing in plants as bio-inspiration for self-repairing polymers. In: Binder WH (ed) Self-healing polymers. From principles to applications. Wiley-VCH, Weinheim, pp 61–89

    Chapter  Google Scholar 

  • Stanhill G (1990) The comparative productivity of organic agriculture. Agric Ecosyst Environ 30:1–26

    Article  Google Scholar 

  • Surridge C (2002) Agricultural biotech: the rice squad. Nature 416:576–578

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  • Vance CP, Chiou T-J (eds) (2011) Focus issue on phosphorus plant physiology. Plant Physiol 156:987–1086

    Google Scholar 

  • van Wyk GF, Everard DA, Geldenhuys CJ (1995) Forest ecotone development and succession: experimental results and guidelines for forest rehabilitation and protection. Report FOR DEA 876. Division of Forest Science and Technology, CSIR, Pretoria

    Google Scholar 

  • von Braun J (2011) Das Welternährungsproblem heute und in der kommenden Generation. Akademie aktuell Bayer Akad Wiss 1:24–27

    Google Scholar 

  • von Caemmerer S, Evans PR (2010) Enhancing C3 photosynthesis. Plant Physiol 154:589–592

    Article  CAS  Google Scholar 

  • von Carlowitz HC (1713) Sylvicultura Oeconomica oder Haußwirthliche Nachricht und Naturmäßige Anweisung zur Wilden Baum-Zucht. J.F. Braun, Leipzig

    Google Scholar 

  • Walter H, Breckle SW (1984) Ökologie der Erde. 2. Spezielle Ökologie der tropischen und subtropischen Zonen. Gustav Fischer, Stuttgart

    Google Scholar 

  • Weigel D, Jürgens G (2002) Stem cells that make stems. Nature 415:751–754

    Article  CAS  PubMed  Google Scholar 

  • Weigel HJ, Bergmann E, Bender J (2014) Plant-mediated ecosystem effects of tropospheric ozone. Prog Bot 76:395–438

    Article  Google Scholar 

  • Weiner CN, Wemer M, Linsenmair KE, Blüthgen N (2011) Land use intensity in grasslands: changes in biodiversity, species composition and specialization in flower visitor networks. Basic Appl Ecol 12:292–299

    Article  Google Scholar 

  • West-Eberhard MJ (1986) Alternative adaptations, speciation, and phylogeny (a review). Proc Natl Acad Sci USA 83:1388–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West-Eberhard MJ (1989) Phenotypic plasticity and origins of diversity. Annu Rev Ecol Syst 20:249–278

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Westhoff P, Gowik U (2010) Evolution of C4 photosynthesis—looking for the master switch. Plant Physiol 154:598–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams K, Caldwell MM, Richards JH (1993) The influence of shade and clouds on water potential: the buffered behavior of hydraulic lift. Plant Soil 157:83–95

    Article  Google Scholar 

Download references

Acknowledgment

I thank Rainer Matyssek for critically reading the manuscript and for many valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Lüttge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lüttge, U. (2016). Plants Shape the Terrestrial Environment on Earth: Challenges of Management for Sustainability. In: Lüttge, U., Cánovas, F., Matyssek, R. (eds) Progress in Botany 77. Progress in Botany, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-319-25688-7_6

Download citation

Publish with us

Policies and ethics