Skip to main content

Root Pressure: Getting to the Root of Pressure

  • Chapter
  • First Online:
Progress in Botany 77

Part of the book series: Progress in Botany ((BOTANY,volume 77))

Abstract

Water and solutes are essential ingredients of root pressure. For root pressure to develop, the entry into root cells including xylem tissues of these ingredients is necessary. Therefore, in the light of latest research findings, the integrated synthesis of the combined “osmotic” and “energetically driven uphill water transport” in plants against water potential gradient and the gravity has been presented with the hope to halt or at least dilute for some time to come the prevalent legacy of “riddle” or “enigma” of root pressure. Further, various techniques, both invasive and noninvasive including new ones, have been described focusing on the factors affecting and consequences and implications of root pressure for agriculture, horticulture, and forestry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed AM, Kroener E, Holz M, Zarebanadkouki M, Carminati A (2014) Mucilage exudation facilitates root water uptake in dry soils. Funct Plant Biol 41:1129–1137

    Article  Google Scholar 

  • Ameglio T, Ewers FW, Cochard H, Martignac M, Vandame M, Bodet C, Cruiziat P (2001) Winter stem xylem pressure in walnut trees: effects of carbohydrates, cooling and freezing. Tree Physiol 21:387–394

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:43–57

    Article  CAS  PubMed  Google Scholar 

  • Azaizeh H, Gunse B, Steudle E (1992) Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings. Plant Physiol 99:886–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai X-F, Zhu J-J, Zhang P, Wang Y-H, Yang L-Q, Zhang L (2007) Na+ and water uptake in relation to radial reflection coefficient of root in arrowleaf saltbush under salt stress. J Integr Plant Biol 49:1334–1340

    Article  CAS  Google Scholar 

  • Baiges I, Schäffner AR, Affenzeller MJ, Mas A (2002) Plant aquaporins. Physiol Plant 115:175–182

    Article  CAS  PubMed  Google Scholar 

  • Balling A, Zimmermann U (1990) Comparative measurements of the xylem pressure of Nicotiana plants by means of the pressure bomb and pressure probe. Planta 182:325–338

    Article  CAS  PubMed  Google Scholar 

  • Baluska F (1995) Structure and function of roots. Springer, Berlin

    Book  Google Scholar 

  • Baluska F, Mancuso S (2013) Root apex transition zone as oscillatory zone. Front Plant Sci 4:354. doi:10.3389/fpls.2013.00354

    Article  PubMed  PubMed Central  Google Scholar 

  • Baluska F, Salaj J, Mathur J, Braun M, Jasper F, Samaj J, Chua N-H, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632

    Article  CAS  PubMed  Google Scholar 

  • Barber SA, Bouldin DR (1984) Roots, nutrients and water influx, and plant growth. ASA Publication, American Society of Agronomy, Madison, WI

    Google Scholar 

  • Barrs HD (1966) Root pressure and leaf water potential. Science 152:1266–1268

    Article  CAS  PubMed  Google Scholar 

  • Benga G (2009) Water channel proteins (later called aquaporins) and relatives: past, present, and future. IUBMB Life 61:112–133

    Article  CAS  PubMed  Google Scholar 

  • Benga G, Popescu O, Pop VI, Holmes RP (1986a) p-Chloromercuribenzene-sulfonate binding by membrane proteins and the inhibition of water transport in human erythrocytes. Biochemistry 25:1535–1538

    Article  CAS  PubMed  Google Scholar 

  • Benga G, Popescu O, Borza V, Pop VI, Muresan A, Mocsy I, Brain A, Wrigglesworth J (1986b) Water permeability of human erythrocytes. Identification of membrane proteins involved in water transport. Eur J Cell Biol 41:252–262

    CAS  PubMed  Google Scholar 

  • Bengough AG, Mullins CE (1990) Mechanical impedance to root growth—a review of experimental techniques and root growth responses. J Soil Sci 41:341–358

    Article  Google Scholar 

  • Berger W (1931) Das Wasserleitungssystem von krautigen Pflanzen, Zwergstaäuchern und Lianen in quantitativer Betrachtung. Beih Bot Centralbl 48:363–390

    Google Scholar 

  • Birner TP, Steudle E (1993) Effects of anaerobic conditions on water and solute relations, and on active transport in roots of maize (Zea mays L.). Planta 190:474–483

    Article  CAS  Google Scholar 

  • Borisjuk NV, Borisjuk LG, Logendra S, Petersen F, Gleba YY, Raskin I (1999) Production of recombinant proteins in plant root exudates. Nat Biotechnol 17:466–469

    Article  CAS  PubMed  Google Scholar 

  • Bose JC (1923) The physiology of the ascent of sap. Longmans, Green and Co., London

    Google Scholar 

  • Boyer JS (1985) Water transport. Annu Rev Plant Physiol 36:473–516

    Article  Google Scholar 

  • Britto DT, Kronzucker HJ (2006) Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trends Plant Sci 11:529–534

    Article  CAS  PubMed  Google Scholar 

  • Brodersen CR, McElrone AJ (2013) Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Front Plant Sci 4:198

    Article  Google Scholar 

  • Brodribb TJ, Holbrook NM (2006) Declining hydraulic efficiency as transpiring leaves desiccate: two types of response. Plant Cell Environ 29:2205–2215

    Article  CAS  PubMed  Google Scholar 

  • Burkle L, Cedzich A, Dopke C, Stransky H, Okumoto S, Gillissen B, Kuhn K, Frommer WB (2003) Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J 34:13–26

    Article  CAS  PubMed  Google Scholar 

  • Cao KF, Yang SJ, Zhang YJ, Brodribb TJ (2012) The maximum height of grasses is determined by roots. Ecol Lett 15:666–672

    Article  PubMed  Google Scholar 

  • Chamberlin TC (1916) The origin of the Earth. The University of Chicago Press, Chicago, IL

    Google Scholar 

  • Clearwater MJ, Blattmann P, Luo Z, Lowe RG (2007) Control of scion vigor by kiwifruit rootstocks is correlated with spring root pressure phenology. J Exp Bot 58:1741–1751

    Article  CAS  PubMed  Google Scholar 

  • Cobb AR, Choat B, Holbrook NM (2007) Dynamics of freeze-thaw embolism in Smilax rotundifolia (Smilacaceae). Am J Bot 94:640–649

    Article  PubMed  Google Scholar 

  • Cochard H, Tyree MT (1990) Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol 6:393–407

    Article  PubMed  Google Scholar 

  • Cochard H, Ewers FW, Tyree MT (1994) Water relations of a tropical vine-like bamboo (Rhipidocladum racemiflorum): root pressures, vulnerability to cavitation and seasonal changes in embolism. J Exp Bot 45:1085–1089

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. John Murray, London

    Book  Google Scholar 

  • Davis TA (1961) High root pressure in palms. Nature 192:227–228

    Article  Google Scholar 

  • De Swaef T, Bleyaert P (2012). Is root pressure the crucial factor to control tipburn in head lettuce? http://www.inagro.be/ophalen_popup.aspx?lijst=Research&ID=11. Accessed 28 Jan 2015

  • De Swaef T, Verbist K, Cornelis W, Steppe K (2012) Tomato sap flow, stem and fruit growth in relation to water availability in rockwool growing medium. Plant Soil 350:237–252

    Article  CAS  Google Scholar 

  • De Swaef T, Hanssens J, Cornelis A, Steppe K (2013) Non-destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modeling. Ann Bot 111:271–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J et al (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527

    Article  CAS  PubMed  Google Scholar 

  • Dieffenbach H, Kramer D, Luttege U (1980) Release of guttation fluid from passive hydathodes of intact barley plants. I. Structural and cytological aspects. Ann Bot 45:397–401

    Google Scholar 

  • Dixon HH, Joly J (1894) On the ascent of sap. Philosophical transactions of the royal society. Biol Sci 186:563–576

    Article  Google Scholar 

  • Dorais M, Gosselin A, Papadopoulos AP (2001) Greenhouse tomato fruit quality. Hortic Rev 26:239–306

    CAS  Google Scholar 

  • Draye X, Kim Y, Lobet G, Javaux M (2010) Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils. J Exp Bot 61:2145–2155

    Article  CAS  PubMed  Google Scholar 

  • Dustmamatov AG, Zholkevich VN (2008) Effects of HgCl2 on principal parameters of exudation from maize detached root systems. Russ J Plant Physiol 55:814–820

    Article  CAS  Google Scholar 

  • Dustmamatov AG, Zholkevish VN, Kuznetsov VV (2004) Water pumping activity of the root system in the process of cross-adaptation of sunflower plants to hyperthermia and water deficiency. Russ J Plant Physiol 51:822–826

    Article  CAS  Google Scholar 

  • Ehleringer JR, Roden J, Dawson TE (2000) Assessing ecosystem-level water relations through stable isotopes ratio analysis. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer, New York, NY, pp 181–198

    Chapter  Google Scholar 

  • Else MA, Davies WJ, Malone M, Jackson MB (1995) A negative hydraulic message from oxygen deficient roots of tomato plants? Influence of soil flooding on leaf water potential, leaf expansion, and synchrony between stomatal conductance and root hydraulic conductivity. Plant Physiol 109:1017–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enns LC, Canny MJ, McCully ME (2000) An investigation of the role of solutes in the xylem sap and in the xylem parenchyma as a source of root pressure. Protoplasma 211:183–197

    Article  CAS  Google Scholar 

  • Enstone DE, Peterson CA, Ma F (2003) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351

    Article  CAS  Google Scholar 

  • Eshel M, Beeckman T (2013) Plant roots: the hidden half, 4th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Ewers FW, Fisher JB (1991) Why vines have narrow stems: histological trends in Bauhinia (Fabaceae). Oecologia 8:233–237

    Article  Google Scholar 

  • Ewers FW, Fisher JB, Fichtner K (1991) Water flux and xylem structure in vines. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 127–160

    Google Scholar 

  • Ewers FW, Cochard H, Tyree MT (1997) A survey of root pressures in vines of a tropical lowland forest. Oecologia 110:191–196

    Article  Google Scholar 

  • Feild TS, Arens NC (2007) The ecophysiology of early angiosperms. Plant Cell Environ 30:291–309

    Article  CAS  PubMed  Google Scholar 

  • Feild TS, Sage TL, Czerniak C, Iles WJD (2005) Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttation-induced flooding of the mesophyll. Plant Cell Environ 28:1179–1190

    Article  CAS  Google Scholar 

  • Fisher JB, Angeles GA, Ewers FW, López-Portillo J (1997) A survey of root pressure in tropical vines and woody species. Int J Plant Sci 158:44–50

    Article  Google Scholar 

  • Fletcher AT, Mader JC (2007) Hormone profiling by LC-QToF-MS/MS in dormant Macadamia integrifolia: correlations with abnormal vertical growth. Plant Growth Regul 26:351–361

    Article  CAS  Google Scholar 

  • Frey-Wyssling A (1941) Die guttation als aligemeine erscheinung. Berichte Der Schweizerischen Botanischen Gesellschaft 51:321–325

    Google Scholar 

  • Fujii Y, Tanaka N (1957) Intensity of guttation in rice seedlings in relation to earliness or lateness of the variety. Jpn J Crop Sci 25:131–132

    Article  Google Scholar 

  • Gentry AH (1991) The distribution and evolution of climbing plants. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 3–50

    Google Scholar 

  • Ginsburg H (1971) Model for iso-osmotic water flow in plant roots. J Theor Biol 32:147–158

    Article  CAS  PubMed  Google Scholar 

  • Grabosky JC, Smiley ET, Dahle GA (2011) Observed symmetry and force of Plantanus × acerifolia (Ait.) Willd. Roots occurring between foam layers under pavement. Arboricult Urban For 37:35–40

    Google Scholar 

  • Hedfalk K, Hosefield T, Nyblom S, Johanson U, Kjellbom D, Neutze R (2006) Aquaporin gating. Curr Opin Struct Biol 16:447–456

    Article  CAS  PubMed  Google Scholar 

  • Heinen RB, Ye Q, Chaumont F (2009) Role of aquaporins in leaf physiology. J Exp Bot 60:2971–2985

    Article  CAS  PubMed  Google Scholar 

  • Henry A (2013) IRRI’s drought stress research in rice with emphasis on roots: accomplishments over the last 50 years. Plant Root 7:5–19

    Article  Google Scholar 

  • Henzler T, Steudle E (1995) Reversible closing of water channels in Chara internodes provides evidence for a composite transport model of the plasma membrane. J Exp Bot 46:199–209

    Article  CAS  Google Scholar 

  • Henzler T, Ye Q, Steudle E (2004) Oxidative gating of water channels (aquaporins) in Chara by hydroxyl radicals. Plant Cell Environ 27:1184–1195

    Article  CAS  Google Scholar 

  • Heuvelink E, Bakker MJ, Marcelis LFM, Raaphorst M (2008) Climate and yield in a closed greenhouse. Acta Hortic 801:1083–1092

    Article  Google Scholar 

  • Hill AE, Shachar-Hill B, Shachar-Hill Y (2004) What are aquaporins for? J Membr Biol 197:1–32

    Article  CAS  PubMed  Google Scholar 

  • Holbrook NM, Zwieniecki MA (1999) Embolism repair and xylem tension: do we need a miracle? Plant Physiol 120:7–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holbrook NM, Ahrens ET, Burns MJ, Zwieniecki MA (2001) In vivo observation of cavitation and embolism repair using magnetic resonance imaging (MRI). Plant Physiol 126:27–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488

    Article  CAS  PubMed  Google Scholar 

  • Javot H, Lauvergeat V, Santoni V, Laurent M, Guclu J, Vinh J, Heyes J, Franck KI, Schaffner AR, Bouchez D, Maurel C (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15:509–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson J (1936) Relation of root pressure to plant disease. Science 84:135–136

    Article  CAS  PubMed  Google Scholar 

  • Johnson RW, Dixon MA, Lee DR (1992) Water relations of the tomato during fruit growth. Plant Cell Environ 15:947–953

    Article  Google Scholar 

  • Jung JS, Preston GM, Smith BL, Guggino WB, Agre P (1994) Molecular structure of the water channel through aquaporins CHIP. The hourglass model. J Biol Chem 269:14648–14654

    CAS  PubMed  Google Scholar 

  • Kaldenhoff R, Ribas-Carbo M, Sans JF, Lovisolo C, Heckwolf M, Uehlein N (2008) Aquaporins and plant water balance. Plant Cell Environ 31:658–666

    Article  CAS  PubMed  Google Scholar 

  • Kaldenhoff R, Kai L, Uehlein N (2014) Aquaporins and membrane diffusion of CO2 in living organisms. Biochim Biophys Acta 1840:1592–1595

    Article  CAS  PubMed  Google Scholar 

  • Karmoker JL, Clarkson DT, Saker LR, Rooney JM, Purves JV (1991) Sulphate deprivation depresses the transport of nitrogen to the xylem and hydraulic conductivity of barley (Hordeum vulgare L.) roots. Planta 185:2269–2278

    Article  Google Scholar 

  • Katsuhara M, Hanba YT, Shiratake K, Maeshima M (2008) Expanding roles of plant aquaporins in plasma membranes and cell organelles. Funct Plant Biol 35:1–14

    Article  CAS  Google Scholar 

  • Kirk GJD (1994) Rice roots: nutrient and water use. International Rice Research Institute, Los Banos, Philippines

    Google Scholar 

  • Klepper B, Kaufmann MR (1966) Removal of salt from xylem sap by leaves and stems of guttating plants. Plant Physiol 41:1743–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knipfer T, Fricke W (2010) Root pressure and a solute reflection coefficient close to unity exclude a purely apoplastic pathway of radial water transport in barley (Hordeum vulgare). New Phytol 187:159–170

    Article  PubMed  Google Scholar 

  • Knipfer T, Das D, Steudle E (2007) During measurements of root hydraulics with pressure probe, the contribution of unstirred layers is minimized in the pressure relaxation mode: comparison with pressure clamp and high pressure flow meter. Plant Cell Environ 30:845–860

    Article  PubMed  Google Scholar 

  • Koiwai H, Nakaminami K, Seo M, Toyomasu T, Koshiba T (2004) Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol 134:1697–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komarnytsky S, Borisjuk N, Borisjuk L, Alam M, Raskin I (2000) Production of recombinant proteins in tobacco guttation fluid. Plant Physiol 124:927–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer PJ (1932) The absorption of water by root systems of plants. Am J Bot 19:148–164

    Article  Google Scholar 

  • Kramer PJ (1945) Absorption of water by plants. Bot Rev 11:310–355

    Article  CAS  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, San Diego, CA

    Google Scholar 

  • Kramer PJ, Currier HB (1950) Water relations of plant cells and tissues. Annu Rev Plant Physiol 1:265–284

    Article  Google Scholar 

  • Kramer PJ, Kozlowski TT (1979) The physiology of woody plants. Academia, Orlando, FL

    Google Scholar 

  • Kundt W, Gruber E (2006) The water circuit of the plants. Do plants have hearts? Quant Biol 0603019:1–19

    Google Scholar 

  • Lafitte HR, Courtois B (2002) Interpreting cultivar environment interactions for yield in upland rice: assigning value to drought-adaptive traits. Crop Sci 42:1409–1420

    Article  Google Scholar 

  • Lauchli A, James RA, Munns R, Huang C, McCully M (2008) Cellspecific localization of Na+ in roots of durum wheat, and possible control points for salt exclusion. Plant Cell Environ 31:1565–1574

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Driever SM, Heuvelink E et al (2012) Evaluation of diel patterns of relative changes in cell turgor of tomato plants using leaf patch clamp pressure probes. Physiol Plant 146:439–447

    Article  CAS  PubMed  Google Scholar 

  • Lens F, Tixier A, Cochard H, Sperry JS, Jansen S, Herbette S (2013) Embolism resistance as a key mechanism to understand adaptive plant strategies. Curr Opin Biotechnol 16:287–292

    Google Scholar 

  • Levin M, Resnick N, Rosianskey Y, Kolotilin I, Wininger S, Lemcoff JH, Cohen S, Galili G, Koltai H, Kapulnik Y (2009) Transcriptional profiling of Arabidopsis thaliana plants’ response to low relative humidity suggests a shoot–root communication. Plant Sci 177:450–459

    Article  CAS  Google Scholar 

  • Lian HL, Yu X, Ye Q, Ding XS, Kitagawa Y et al (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489

    Article  CAS  PubMed  Google Scholar 

  • Liu BB, Steudle E, Deng X-P, Zhang S-Q (2009) Root pressure probe can be used to measure the hydraulic properties of whole root systems of corn (Zea mays L.). Bot Stud 50:303–310

    Google Scholar 

  • Lobet G, Hachez C, Chaumont F, Javaux M, Draye X (2013) Root water uptake and water flow in the soil-root domain. In: Eshel M, Beeckman T (eds) Plant roots: the hidden half, 4th edn. CRC Press, New York, NY, pp 18–24

    Google Scholar 

  • Lu P, Woo KC, Liu ZT (2002) Estimation of whole-plant transpiration of bananas using sap flow measurements. J Exp Bot 53:1771–1779

    Article  CAS  PubMed  Google Scholar 

  • Lundegardh H (1944) Bleeding and sap movement. Arkiv for Botanik 31:1–56

    CAS  Google Scholar 

  • Maaswinkel RHM, Welles GWH (1986) Factors influencing glassiness in lettuce. Neth J Agr Sci 34:57–65

    Google Scholar 

  • Macduff JH, Bakken AK (2003) Diurnal variation in uptake and xylem contents of inorganic and assimilated N under continuous and interrupted N supply to Phleum pretense and Festuca pratensis. J Exp Bot 54:431–444

    Article  CAS  PubMed  Google Scholar 

  • Maeshima M, Ishikawa F (2008) ER membrane aquaporins in plants. Eur J Physiol 456:709–716

    Article  CAS  Google Scholar 

  • Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol Plant Mol Biol 48:399–429

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Simonneau T, Sutka M (2010) The significance of roots as hydraulic rheostats. J Exp Bot 61:3191–3198

    Article  CAS  PubMed  Google Scholar 

  • McDowell N, Pockman W, Allen C, Breshears D, Cobb N, Kolb T, Sperry JS, West A, Williams D, Yepez E (2008) Mechanisms of plant survival and mortality during drought. Why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • McElrone AJ, Bichler J, Pockman WT, Addington RN, Linder CR, Jackson RB (2007) Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves. Plant Cell Environ 30:1411–1421

    Article  CAS  PubMed  Google Scholar 

  • Meinzer FC, Clearwater MJ, Goldstein G (2001) Water transport in trees: current perspectives, new insights and some controversies. Environ Exp Bot 45:239–262

    Article  PubMed  Google Scholar 

  • Meister R, Rajani MS, Ruzicka D, Schachtman DP (2014) Challenges of modifying root traits in crops for agriculture. Trends Plant Sci 19:779–788

    Article  CAS  PubMed  Google Scholar 

  • Milburn JA, McLaughlin ME (1974) Studies of cavitation in isolated vascular bundles and whole leaves of Plantago major L. New Phytol 73:861–871

    Article  Google Scholar 

  • Miller DM (1985) Studies of root function in Zea mays: III. Xylem sap composition at maximum root pressure provides evidence of active transport into the xylem and a measurement of the reflection coefficient of the root. Plant Physiol 77:162–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller-Rushing AJ, Primack RB (2008) Effects of winter temperatures on two birch (Betula) species. Tree Physiol 28:659–664

    Article  PubMed  Google Scholar 

  • Misra RK, Dexter AR, Alston AM (1986) Maximum axial and radial growth pressures of plant roots. Plant Soil 95:315–326

    Article  Google Scholar 

  • Mitchell JP, Shennan C, Grattan SR, May DM (1991) Tomato fruit yields and quality under water deficit and salinity. J Am Soc Hort Sci 116:215–221

    CAS  Google Scholar 

  • Mozhaeva LV, Pil’shchikova NV (1972) Nature of pumping water process by plant roots. Izvestiya Timiryazevskol Sel’skokhozyaistven-noi Akademii 3:3–15

    Google Scholar 

  • Munns R (1985) Na+, K+ and Cl in xylem sap flowing to shoots of NaCl-treated barley. J Exp Bot 36:1032–1042

    Article  CAS  Google Scholar 

  • Nardini AL, Gullo MA, Salleo S (2011) Refilling embolized xylem conduits. Is it a matter of xylem unloading? Plant Sci 180:604–611

    Article  CAS  PubMed  Google Scholar 

  • Neufeld HS, Grantz DA, Meinzer FC, Goldstein G, Crisosto GM, Cristosto C (1992) Genotypic variability in vulnerability of leaf xylem to cavitation in water-stressed and well-irrigated sugarcane. Plant Physiol 100:1020–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Leary JW (1966) Root pressure exudation from apical root segments. Nature 212:96–97

    Article  Google Scholar 

  • O’Leary JW, Kramer PJ (1964) Root pressure in conifers. Science 145:284–285

    Article  PubMed  Google Scholar 

  • O’Toole JC, Chang TT (1978) Drought and rice improvement in perspective. IRRI Res Pap Ser Los Baños, Philippines 14:27

    Google Scholar 

  • Oertli JJ (1966) Active water transport in plants. Physiol Plant 19:809–817

    Article  CAS  Google Scholar 

  • Ogata S, Saneoka H, Matsumoto K (1985) Nutritional-physiological evaluation of drought resistance of warm season forage species: comparative studies on root development water and nutrient absorption of forage species at various soil moisture levels. J Jpn Grassl Sci 31:263–271

    Google Scholar 

  • Overton JB (1921) The mechanism of root pressure and its relation to sap flow. Am J Bot 8:369–374

    Article  Google Scholar 

  • Palmgren MG (2001) H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Mol Biol 52:817–845

    Article  CAS  Google Scholar 

  • Palzkill DA, Tibbitts TW (1977) Evidence that root pressure flow is required for calcium transport to head leaves of cabbage. Plant Physiol 60:854–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen O (1993) Long-distance water transport in aquatic plants. Plant Physiol 103:1369–1375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen O (1994) Acropetal water transport in submerged plants. Bot Acta 107:61–65

    Article  Google Scholar 

  • Pedersen O (1997) The nature of water transport in aquatic plants. In: Pedersen O (ed) Freshwater biology. Priorities and development in Danish research. Gad, København, pp 196–207

    Google Scholar 

  • Pedersen O, Sand-Jensen K (1997) Transpiration does not control growth and nutrient supply in the amphibious plant, Mentha aquatica. Plant Cell Environ 20:117–123

    Article  CAS  Google Scholar 

  • Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P (2007) Crystal structure of the plasma membrane proton pump. Nature 450:1111–1114

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer W (1881) Pflanzenphysiologie. Ein Handbuch des Stoffwechsels und Kraftwechsels in der Pflanze. Erster Band: Stoffwechsel. Verlag Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Pickard WF (2003a) The riddle of root pressure. I. Putting Maxwell’s demon to rest. Funct Plant Biol 30:121–134

    Article  Google Scholar 

  • Pickard WF (2003b) The riddle of root pressure. II. Root exudation at extreme osmolalities. Funct Plant Biol 30:135–141

    Article  Google Scholar 

  • Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema E (2005) Torus-margo pits help conifers compete with angiosperms. Science 310:1924

    Article  CAS  PubMed  Google Scholar 

  • Preston RD (1952) Movement of water in higher plants. In: Frey-Wyssling A (ed) Deformation and flow in biological systems. North Holland Publishing, Amsterdam, pp 257–321

    Google Scholar 

  • Preston R (2007) The wild trees: a story of passion and daring. Anchor Books, California

    Google Scholar 

  • Priestley JH (1920) The mechanism of root pressure. New Phytol 19:153–212

    Article  Google Scholar 

  • Putz FE (1983) Liana biomass and leaf area of a “tierra firme” forest in the Rio Negro Basin, Venezuela. Biotropica 15:185–189

    Article  Google Scholar 

  • Radin JW, Eidenbock MP (1984) Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton. Plant Physiol 75:372–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radin JW, Matthews MA (1989) Water transport properties of cortical cells in roots of nitrogen- and phosphorus-deficient cotton seedlings. Plant Physiol 89:264–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raleigh GJ (1946) The effect of various ions on guttation of the tomato. Plant Physiol 21:194–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renner O (1915) Theoretisches und Experimentelles zur Kohasionstherie der [Theoretical and experimental contributions to the cohesion theory of water transport]. Jahrbuch Wissenschaftliche Botanik 56:617–667

    Google Scholar 

  • Renner O (1925) Zum Nachweis negativer Drucke im Gefäßwasser bewurzelter Holzgewächse. Flora 119:402–408

    Google Scholar 

  • Sachs J (1887) Vorlesunguber Pflanzen-Physiologie, 2nd edn. Verlag Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Salleo S, Logullo MA, Depaoli D, Zippo M (1996) Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism. New Phytol 132:47–56

    Article  Google Scholar 

  • Scholander PS, Ruud B, Leivestad H (1957) The rise of sap in a tropical liana. Plant Physiol 32:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholander PS, Bradstreet E, Hemmingsen E, Hammel H (1965) Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148:339–346

    Article  CAS  PubMed  Google Scholar 

  • Schwenke H, Wagner E (1992) A new concept of root exudation. Plant Cell Environ 15:289–299

    Article  Google Scholar 

  • Sears ME (2013) Chelation: harnessing and enhancing heavy metal detoxification—a review. Sci World J 2013:219840

    Article  CAS  Google Scholar 

  • Secchi F, Zwieniecki MA (2011) Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. Plant Cell Environ 34:514–524

    Article  CAS  PubMed  Google Scholar 

  • Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell 14:869–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S (2013) Guttation: path, principles and functions. Aust J Bot 61:497–515

    Article  Google Scholar 

  • Singh S (2014a) Guttation: quantification, microbiology and implications for phytopathology. In: Luttge U et al (eds) Progress in Botany, vol 75. Springer, Berlin, pp 187–214

    Google Scholar 

  • Singh S (2014b) Guttation: new insights into agricultural implications. Adv Agron 128:7–135

    Google Scholar 

  • Singh G, Singh TN (1989) Root-mediated water transport to the shoot of rice. Curr Sci 58:1134–1138

    Google Scholar 

  • Singh S, Singh TN (1999) Root growth of wheat in simulated vertical and lateral splits of layered salt profiles in soil. Indian J Plant Physiol 4:73–78

    Google Scholar 

  • Singh S, Singh TN (2000) Rooting ability and water relations of rice plant. Indian J Plant Physiol 5:1–6

    Google Scholar 

  • Singh S, Singh TN (2013) Guttation: chemistry, crop husbandry and molecular farming. Phytochem Rev 12:147–172

    Article  CAS  Google Scholar 

  • Singh G, Singh TN, Singh S (1999) Trinodal rooting in rice: a new parameter on drought resistance. Indian J Plant Physiol 4:232–235

    Google Scholar 

  • Singh S, Chauhan JS, Singh TN (2008) Guttation: a potential yield enhancing trait in rice. Curr Sci 95:455–456

    Google Scholar 

  • Singh S, Singh TN, Chauhan JS (2009a) Water transport in crop plants with special reference to rice: key to crop production under global water crisis. J Crop Improv 23:194–212

    Article  Google Scholar 

  • Singh S, Singh TN, Chauhan JS (2009b) Guttation in rice: occurrence, regulation and significance in varietal improvement. J Crop Improv 23:351–365

    Article  Google Scholar 

  • Sperry JS (1983) Observations on the structure and function of hydathodes in Blechnum lehmannii. Am Fern J 73:65–72

    Article  Google Scholar 

  • Sperry JS (1993) Winter xylem embolism and spring recovery in Betula cordifolia, Fagus grandifolia, Abies balsamea and Picea rubens. In: Borghetti M, Grace J, Raschi A (eds) Water transport in plants under climatic stress. Cambridge University Press, Cambridge, pp 87–98

    Google Scholar 

  • Sperry JS, Sullivan JEM (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse porous, and conifer species. Plant Physiol 100:603–613

    Article  Google Scholar 

  • Sperry JS, Holbrook NM, Zimmermann MH, Tyree MT (1987) Spring filling of xylem vessels in wild grapevine. Plant Physiol 83:414–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT (1988) Seasonal occurrence of xylem embolism in sugar maple (Acer saccharum). Am J Bot 75:1212–1218

    Article  Google Scholar 

  • Sperry JS, Nichols KL, Sullivan JEM, Eastlack SE (1994) Comparative studies of xylem embolism in ring-porous, diffuse-porous and coniferous trees of northern Utah and interior Alaska. Ecology 75:1736–1752

    Article  Google Scholar 

  • Steudle E (1993) Pressure probe techniques: basic principles and application to studies of water and to studies of water and solute relations at cell, tissue and organ. In: Smith JAC, Griffihs H (eds) Water deficits: plant responses from cell to community. Bios Scientific Publishers, Oxford, pp 5–36

    Google Scholar 

  • Steudle E, Jeschke WD (1983) Water transport in barley roots. Planta 158:237–248

    Article  CAS  PubMed  Google Scholar 

  • Steudle E, Henzler T (1995) Water channels in plants: do basic concepts of water transport change? J Exp Bot 46:1067–1076

    Article  CAS  Google Scholar 

  • Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542

    Article  CAS  PubMed  Google Scholar 

  • Steudle E (2001) The cohesion-tension mechanism and the acquisition of water by plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:847–875

    Article  CAS  PubMed  Google Scholar 

  • Steudle E, Meshcheryakov AB (1996) Hydraulic and osmotic properties of oak roots. J Exp Bot 47:387–401

    Article  CAS  Google Scholar 

  • Steudle E, Peterson C (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Steudle E, Oren R, Schulze ED (1987) Water transport in maize root. Plant Physiol 84:1220–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steudle E, Murrmann M, Peterson CA (1993) Transport of water and solutes across corn roots modified by puncturing the endodermis. Plant Physiol 103:335–349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stiller V, Lafitte HR, Sperry JS (2003) Hydraulic properties of rice and the response of gas exchange to water stress. Plant Physiol 132:1698–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocking CR (1956) Root pressure. In: Ruhland W (ed) Handbuch der pflazenphysiologie. Springer, Berlin, pp 581–595

    Google Scholar 

  • Takeda F, Glenn DM (1989) Hydathode anatomy and the relationship between guttation and plant water status in strawberry (Fragaria x ananassa duch.). Acta Hortic (ISHS) 265:387–392

    Article  Google Scholar 

  • Tanner W, Beevers H (1999) Does transpiration have an essential function in long-distance ion transport in plants? Plant Cell Environ 13:745–750

    Article  Google Scholar 

  • Tanner W, Beevers H (2001) Transpiration, a prerequisite for long-distance transport of minerals in plants? Proc Natl Acad Sci USA 98:9443–9447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teakle NL, Tyerman SD (2010) Mechanisms of chloride transport contributing to salt tolerance. Plant Cell Environ 33:566–589

    Article  CAS  PubMed  Google Scholar 

  • Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466–1476

    Article  PubMed  Google Scholar 

  • Tyerman SD, Bohnert H, Maurel C, Steudle E, Smith JAC (1999) Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J Exp Bot 50:1055–1071

    CAS  Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194

    Article  CAS  PubMed  Google Scholar 

  • Tyree MT (2003a) Plant hydraulics: the ascent of water. Nature 423(6943)

    Google Scholar 

  • Tyree MT (2003b) Hydraulic properties of roots. In: Kroon DH, Visser EJW (eds) Root ecology. Springer, Berlin, pp 125–149

    Chapter  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Biol 40:19–36

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, New York, NY

    Book  Google Scholar 

  • Tyree MT, Fiscus EL, Wullschleger SD, Dixon MA (1986) Detection of xylem cavitation in corn under field conditions. Plant Physiol 82:597–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyree MT, Yang S, Cruiziat P, Sinclair B (1994) Novel methods of measuring hydraulic conductivity of tree root systems and interpretation using AMAIZED: a maize-root dynamic model for water and solute transport. Plant Physiol 104:189–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Bavel MG, van Bavel CHM (1990) Dynagage installation and operational manual. Dynamax, Houston, TX

    Google Scholar 

  • Vandeleur RK, Mayo G, Shelden MC, Gilliham M, Kaiser BN, Tyerman SD (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149:445–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voicu MC, Zwiazek JJ, Tyree MT (2008) Light response of hydraulic conductance in bur oak (Quercus macrocarpa) leaves. Tree Physiol 28:1007–1015

    Article  CAS  PubMed  Google Scholar 

  • Wayne R, Tazawa M (1990) Nature of the water channels in the internodal cells of Nitellopsis. J Membr Biol 116:31–39

    Article  CAS  PubMed  Google Scholar 

  • Wegner LH (2014) Root pressure and beyond: energetically uphill water transport into xylem vessels? J Exp Bot 65:381–393

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Tyree MT, Steudle E (1999) Direct measurement of xylem pressure in leaves of intact maize plants. A test of the cohesion-tension theory taking hydraulic architecture into consideration. Plant Physiol 121:1191–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PR (1938) “Root pressure”—an unappreciated force in sap movement. Am J Bot 25:223–227

    Article  CAS  Google Scholar 

  • White PR, Schuler E, Kern JR, Fuller FH (1958) “Root pressure” in gymnosperms. Science 128:308–309

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Peng S, Zheng Y, Mo J, Luo W, Zeng X, He X (2006) Interactive effects between plant allelochemicals, plant allelopathic potential and soil nutrients. J Appl Ecol 17:1747–1750

    CAS  Google Scholar 

  • Zachary M (2009) Sap flow dynamics of a tropical, woody bamboo: deductions of physiology and hydraulics within Guadua angustifolia. PhD thesis, Washington University in St. Louis, USA

    Google Scholar 

  • Zaitseva RI, Minashina NG, Sudnitsyn II (1998) Influence of capillary-sorptive and osmotic moisture pressure in chernozem on the growth and guttation of barley. Eurasian Soil Sci 31:1075–1082

    Google Scholar 

  • Zelazny E, Borst JW, Muylaert M, Batoko H, Hemminga MA, Chaumont F (2007) FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc Natl Acad Sci USA 104:12359–12364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeuthen T (2010) Water-transporting proteins. J Membr Biol 234:57–73

    Article  CAS  PubMed  Google Scholar 

  • Zeuthen T, McAulay N (2012) Cotransport of water by Na+–K+–2Cl cotransporters expressed in Xenopus oocytes: NKCC1 versus NKCC2. J Physiol 590:1139–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C-X, Xi-Ping D, Sui-QI Z, Qing Y, Steudle E, Lun S (2004) Advances in the studies on water uptake by plant roots. Acta Bot Sin 46:505–514

    Google Scholar 

  • Zholkevich VN (1991) Root Pressure. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots, the hidden half. Marcel-Dekker, New York, NY, pp 589–603

    Google Scholar 

  • Zholkevich VN, Popova MS, Zhukovskaya NV (2007) Stimulatory effects of adrenalin and noradrenalin on root water-pumping activity and the involvement of G-proteins. Russ J Plant Physiol 54:790–796

    Article  CAS  Google Scholar 

  • Zhu JJ, Zimmermann U, Thurmer F, Haase A (1995) Xylem pressure in maize roots subjected to osmotic stress: determination of radial reflection coefficients by using the xylem pressure probe. Plant Cell Environ 18:906–912

    Article  Google Scholar 

  • Zhu JJ, Bai XF, Bu QM, Jiang XM (2010) An analysis to the driving forces for water and salt absorption in roots of maize seedlings under salt stress. Agr Sci China 9:806–812

    Article  CAS  Google Scholar 

  • Zimmermann U, Zhu JJ, Benkert R, Schneider H, Thurmer F, Zimmermann G (1995) Xylem pressure measurements in intact laboratory plants and excised organs: a critical evaluation of methods in the literature and the xylem pressure probe. In: Terazawa M, McLeoad CA, Tamia Y (eds) Tree sap. Hokkaido University Press, Sapporo, pp 59–70

    Google Scholar 

  • Zimmermann U, Schneider H, Wegner LH, Haase A (2004) Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? New Phytol 162:575–615

    Article  Google Scholar 

  • Zimmermann D, Reuss R, Westhoff M et al (2008) A novel, non-invasive, online-monitoring, versatile and easy plant-based probe for measuring leaf water status. J Exp Bot 59:3157–3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwieniecki MA, Holbrook NM (2009) Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends Plant Sci 14:530–534

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is highly delighted and most grateful to Prof. U. Luettge, Editor of Progress in Botany for having being invited by him to write this chapter. He also extends his most sincere thanks to him for the pains taking and critical reading of the manuscript and forwarding useful comments and constructive suggestions for the improvement of the text. At the local level, the author wishes to thank Prof. Fassil Kebede, Dean, College of Agriculture & Rural Transformation, and Mr. Tesfaye Wossen, Head, Department of Plant Sciences, for continued moral support during the write-up of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, S. (2016). Root Pressure: Getting to the Root of Pressure. In: Lüttge, U., Cánovas, F., Matyssek, R. (eds) Progress in Botany 77. Progress in Botany, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-319-25688-7_3

Download citation

Publish with us

Policies and ethics