Skip to main content

Roles of Memory and Circadian Clock in the Ecophysiological Performance of Plants

  • Chapter
  • First Online:
Progress in Botany 77

Part of the book series: Progress in Botany ((BOTANY,volume 77))

Abstract

Adaptation and acclimation of metabolism and development to environmental conditions at the site of rooting requires nonmobile plants to memorize information introduced by external signals. These act at various spatiotemporal levels of structure and function and ecophysiological performance. There are different types of memory, among which are priming memory, store/recall memory (STO/RCL), where both the storage and the recall function as well as their combination have ecophysiological significance, and epigenetic memory. Timing is important. Therefore, ultradian, circadian and annual rhythms are underlying memory functions, where the circadian clock may represent a prominent component. Memorization associated with adaptation and acclimation needs implementation of memory as backbone. A plethora of ecological impacts require memory, some of which will be exemplified and critically examined, namely, molecular aspects of membrane transport, fitness, photosynthesis, osmotic stress and salinity, pollution events and priming by volatile organic compounds and by vibrations. Memory is not an occasional episode but a fundamental property of general importance in the life of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams KL (2010) Dandelions ‘remember’ stress: heritable stress-induced methylation patterns. New Phytol 185:867–868

    Article  PubMed  Google Scholar 

  • Alvarez ME, Nota F, Cambiagno DA (2010) Epigenetic control of plant immunity. Mol Plant Pathol 11:563–576

    Article  CAS  PubMed  Google Scholar 

  • Amzallag GN (2002) The adaptive potential of plant development: evidence from the response to salinity. In: Läuchli A, Lüttge U (eds) Salinity: environment—plants—molecules. Kluver, Dordrecht, pp 291–312

    Google Scholar 

  • Amzallag GN (2005) Perturbed reproductive development in salt-treated Sorghum bicolor: a consequence of modifications in regulation networks? J Exp Bot 56:2821–2829

    Article  CAS  PubMed  Google Scholar 

  • Amzallag GN, Seligmann H, Lerner HR (1993) A developmental window for salt-adaptation in Sorghum bicolor. J Exp Bot 44:645–652

    Article  Google Scholar 

  • Appel HM, Cocroft RB (2014) Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 175:1257–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek D, Jiang J, Chung JS, Wang B, Chen J, Xin Z, Shi H (2011) Regulated AtHKT1 gene expression by a distal enhancer and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol 52:149–161

    Article  CAS  PubMed  Google Scholar 

  • Bahnweg G, Heller W, Stich S, Knappe C, Betz G, Heerdt C, Kehr RD, Ernst D, Langebartels C, Nunn AJ, Rothenburger J, Schubert R, Müller-Starck G, Werner H, Matyssek R, Sandermann H Jr (2005) Beech leaf colonization by the endophyte Apiognomonia errabunda dramatically depends on light exposure and climatic conditions. Plant Biol 7:659–669

    Article  CAS  PubMed  Google Scholar 

  • Bailey C, Chen M (1983) Morphological basis of long-term habituation and sensitization in Aplysia. Science 220:91–93

    Article  CAS  PubMed  Google Scholar 

  • Baluška F, Ninkovic V (2010) Plant communication from an ecological perspective. Springer, Berlin, p 252

    Book  Google Scholar 

  • Bilger W, Björkman O (1994) Relationships among violaxanthin deepoxidation, thylakoid membrane conformation, and non-photochemical chlorophyll fluorescence quenching in leaves of cotton (Gossypium hirsutum L.). Planta 193:238–246

    Article  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  • Bond DM, Finnegan EJ (2007) Passing the message on: inheritance of epigenetic traits. Trends Plant Sci 12:211–216

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJA (2010) Exploiting plant signals in sustainable agriculture. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 215–227

    Chapter  Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful ‘memories’ of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Buchanan RB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society Plant Physiologists, Rockville, MD, 1367p

    Google Scholar 

  • Cervantes-Laurean D, Jacobson EL, Jacobson MK (1996) Glycation and glycoxidation of histones by ADP-ribose. J Biol Chem 271:10461–10469

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Lv S, Meng Y (2010) Epigenetic performers in plants. Dev Growth Differ 52:555–566

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J-K (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath U (2009) Priming of induced plant defense responses. Adv Bot Res 51:361–395

    Article  CAS  Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Thulke O, Katz V, Schwindling S, Kohler A (2001) Priming as a mechanism in induced systemic resistance of plants. Eur J Plant Pathol 107:113–119

    Article  CAS  Google Scholar 

  • Covington MF, Panda S, Liu XL, Strayer CA, Wagner DR, Kay SA (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13:1305–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Critchley C, Russell AW (1994) Photoinhibition of photosynthesis in vivo: the role of protein turnover in photosystem II. Physiol Plant 92:188–196

    Article  CAS  Google Scholar 

  • Darrah C, Taylor BL, Edwards KD, Brown PE, Hall A, McWatters HG (2006) Analysis of phase of LUCIFERASE expression reveals novel circadian quantitative trait loci in Arabidopsis. Plant Physiol 140:1464–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies E, Stankovic B, Vian A, Wood AJ (2012) Where has all the message gone? Plant Sci 185–186:23–32

    Article  PubMed  CAS  Google Scholar 

  • Daxinger L, Whitelaw E (2010) Transgenerational epigenetic inheritance: more questions than answers. Genome Res 20:1623–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desbiez MO, Champagnat P, Boyer N, Frachisse JM, Gaspar T, Thellier M (1983) Inhibition correlative de la croissance de l’hypocotyle de Bidens pilosus L. par des traumatismes cotylédonaires légers. Bull Soc Bot Fr (Actual Bot) 130:67–77

    Google Scholar 

  • Desbiez MO, Champagnat P, Thellier M (1986) Mécanismes de mise en mémoire et de rappel de mémoire chez Bidens pilosus. CR Acad Sci Paris 302:573–578

    Google Scholar 

  • Desbiez MO, Gaspar T, Crouzillat D, Frachisse JM, Thellier M (1987) Effect of cotyledonary prickings on growth, ethylene metabolism and peroxidase activity in Bidens pilosus. Plant Physiol Biochem 25:137–143

    CAS  Google Scholar 

  • Desbiez MO, Tort M, Thellier M (1991) Control of a symmetry-breaking process in the course of the morphogenesis of plantlets of Bidens pilosa L. Planta 184:397–402

    Article  CAS  PubMed  Google Scholar 

  • Desbiez MO, Mikulecky D, Thellier M (1994) Growth messages in plants: principle of a possible modeling and further experimental characteristics. J Biol Syst 2:127–136

    Article  Google Scholar 

  • Desbiez MO, Tort M, Monnier C, Thellier M (1998) Asymmetrical triggering of the cell cycle in opposite buds of a young plant, after a slight cotyledonary wound. CR Acad Sci Paris (Sciences de la Vie/Life Sciences) 321:403–407

    Google Scholar 

  • Devlin PF (2002) Signs of the time: environmental input to the circadian clock. J Exp Bot 53:1535–1550

    Article  CAS  PubMed  Google Scholar 

  • Dicke M (2009) Behavioural and community ecology of plants that cry for help. Plant Cell Environ 32:654–665

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Fromm M, Avramona Z (2012) Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat Commun 3:740

    Article  PubMed  CAS  Google Scholar 

  • Dixon LE, Hodge SK, van Ooijen G, Troein C, Akman OE, Millar AJ (2014) Light and circadian regulation of clock components aids flexible responses to environmental signals. New Phytol 203:568–577

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  • Dolmetsch RE, Lewis RS, Goodnow CC, Healy JJ (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858

    Article  CAS  PubMed  Google Scholar 

  • Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 55:51–86

    Article  PubMed  Google Scholar 

  • Edmunds LN, Tamponnet C (1990) Oscillator control of cell division cycles in Euglena: role of calcium in circadian time-keeping. In: O’Day DH (ed) Calcium as an intracellular messenger in eucaryotic microbes. American Society for Microbiology, Washington, DC, pp 97–123

    Google Scholar 

  • Farré EM (2012) The regulation of plant growth by the circadian clock. Plant Biol 14:401–410

    Article  PubMed  CAS  Google Scholar 

  • Forbes-Stovall J, Howton J, Young M, Davis G, Chandler T, Kessler B, Rinehart CA, Jacobshagen S (2014) Chlamydomonas reinhardtii strain CC-124 is highly sensitive to blue light in addition to green and red light in resetting its circadian clock, with the blue-light photoreceptor plant cryptochrome likely acting as negative modulator. Plant Cell Physiol 75:14–23

    CAS  Google Scholar 

  • Frankhauser C, Staiger D (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216:1–16

    Article  CAS  Google Scholar 

  • Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, Tajima T, Nakagawa M, Hayashi K, Coupland G, Mizoguchi T (2008) Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell 20:2960–2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagliano M, Renton M, Depczynski M, Mancuso S (2014) Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia 175:63–72

    Article  PubMed  Google Scholar 

  • Gális I, Gaquerel E, Pandey SP, Baldwin IT (2009) Molecular mechanisms underlying plant memory in JA-mediated defense responses. Plant Cell Environ 32:617–627

    Article  PubMed  CAS  Google Scholar 

  • Gayler S (2010) Modélisation de l’effet de facteurs de l’environnement sur la répartition des ressources dans un système végétal mixte. CR Acad Agric France 96:89–90

    Google Scholar 

  • Gayler S, Grams TEE, Kozovits A, Luedemann G, Winkler JB, Priesack E (2006) Analysis of competition effects in mono- and mixed cultures of juvenile beech and spruce by means of the plant growth simulation model PLATHO. Plant Biol 8:503–514

    Article  CAS  PubMed  Google Scholar 

  • Gayler S, Grams TEE, Heller W, Treutter D, Priesack E (2008) A dynamic model of environmental effects on allocation to carbon-based secondary compounds in juvenile trees. Ann Bot 101:1089–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99:197–209

    Article  CAS  Google Scholar 

  • Gilmore AM, Govindjee (1999) How higher plants respond to excess light: energy dissipation in photosystem II. In: Singhal GS, Renger G, Sopory SK, Irrgang KD, Govindjee (eds) Concepts in photobiology: photosynthesis and photomorphogenesis. Narosa Publishing House, New Delhi, pp 513–548

    Chapter  Google Scholar 

  • Gilmore AM, Yamasaki H (1998) 9-Aminoacridine and dibucaine exhibit competitive interactions and complicated inhibitory effects that interfere with measurements of ΔpH and xanthophyll cycle-dependent photosystem II energy dissipation. Photosynth Res 57:159–174

    Article  CAS  Google Scholar 

  • Gilmore AM, Hazlett TL, Debrunner PG, Govindjee (1996) Comparative time-resolved photosystem II chlorophyll a fluorescence analyses reveal distinctive differences between photoinhibitory reaction center damage and xanthophyll cycle-dependent energy dissipation. Photochem Photobiol 64:552–563

    Article  CAS  PubMed  Google Scholar 

  • Gilmore AM, Shinkarev VP, Hazlett TL, Govindjee (1998) Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids. Biochemistry 73:13582–13593

    Article  Google Scholar 

  • Gols R (2014) Direct and indirect chemical defenses against insects in a multitrophic framework. Plant Cell Environ 37:1741–1752

    Article  PubMed  Google Scholar 

  • Goss R, Lepetit B (2015) Biodiversity of NPQ. J Plant Physiol 172:13–32

    Article  CAS  PubMed  Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352

    Article  CAS  PubMed  Google Scholar 

  • Habte E, Müller LM, Shtaya M, Davis SJ, von Korff M (2014) Osmotic stress at the barley root affects expression of circadian clock genes in the shoot. Plant Cell Environ 37:1321–1337

    Article  CAS  PubMed  Google Scholar 

  • Harmer SL, Kay SA (2005) Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell 17:1926–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Chow WS (2003) The rate coefficient of repair of photosystem II after photoinactivation. Physiol Plant 118:297–304

    Article  CAS  Google Scholar 

  • Heil M (2010) Within-plant signaling by volatiles triggers systemic defences. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 99–112

    Chapter  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Holt NE, Zigmantas D, Valkunas L, Li X-P, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban A (2005) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56:365–373

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1994) Regulation of light harvesting in green plants. Indication by nonphotochemical quenching of chlorophyll fluorescence. Plant Physiol 106:415–420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  CAS  PubMed  Google Scholar 

  • Hotta CT, Gardner MJ, Hubbard KE, Baek SJ, Dalchau N, Suhita D, Dodd AN, Webb AAR (2007) Modulation of environmental responses of plants by circadian clocks. Plant Cell Environ 30:333–349

    Article  CAS  PubMed  Google Scholar 

  • Hütt M-T, Lüttge U, Thellier M (2015) Noise-induced phenomena and complex rhythms: a test scenario for plant systems biology. In: Mancuso S, Shabala S (eds) Rhythms in plants, 2nd edn. Springer, Berlin, pp 279–321

    Chapter  Google Scholar 

  • Ibáñez C, Kozarewa I, Johansson M, Ögren E, Rohde A, Eriksson ME (2010) Circadian clock components regulate entry and affect exit of seasonal dormancy as well as winter hardiness in Populus trees. Plant Physiol 153:1823–1833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jablonka E, Lamb MJ (1989) The inheritance of acquired epigenetic variation. J Theor Biol 139:69–83

    Article  CAS  PubMed  Google Scholar 

  • Jennings RC, Islam K, Zucchelli G (1986) Spinach-thylakoid phosphorylation: studies on the kinetics of changes in photosystem antenna size, spill-over and phosphorylation of light-harvesting chlorophyll a/b protein. Biochim Biophys Acta [Bioenergetics] 850:483–489

    Article  CAS  Google Scholar 

  • Johnson CH (1992) Phase response curves: what can they tell us about circadian clocks? In: Hiroshige T, Honma K (eds) Circadian clocks from cell to human. Hokkaido University Press, Sapporo, Japan, pp 209–249

    Google Scholar 

  • Johnson CH, Golden SS (1999) Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu Rev Microbiol 53:389–409

    Article  CAS  PubMed  Google Scholar 

  • Kakutani T (2002) Epi-alleles in plants: inheritance of epigenetic information over generations. Plant Cell Physiol 43:1106–1111

    Article  CAS  PubMed  Google Scholar 

  • Kant P, Gordon M, Kant S, Zolla G, Davydov O, Heimer YM, Chalifa-Caspi V, Shaked R, Barak S (2008) Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses. Plant Cell Environ 31:697–714

    Article  CAS  PubMed  Google Scholar 

  • Karban R, Wetzel WC, Shiojiri K, Ishizaki S, Ramirez SR, Blande JD (2014) Deciphering the language of plant communication: volatile chemotypes of sagebrush. New Phytol 204:380–385

    Article  PubMed  Google Scholar 

  • Kathiria P, Sidler C, Golubov A, Kalischuk M, Kawchuk LM, Kovalchuk I (2010) Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants. Plant Physiol 153:1859–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2004) Herbivore-induced plant vaccination. Part I. The orchestration of plant defenses in nature and their fitness consequences in wild tobacco Nicotiana attenuata. Plant J 38:639–649

    Article  CAS  PubMed  Google Scholar 

  • Kikis EA, Khanna R, Quail PH (2005) ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J 44:300–313

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Seki M (2014) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol 55:1859–1863

    Article  PubMed  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effect of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    Article  CAS  PubMed  Google Scholar 

  • Knight MR, Smith SM, Trewavas AJ (1992) Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci USA 89:4967–4971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight H, Brandt S, Knight MR (1998) A history of stress alters drought calcium signaling pathways in Arabidopsis. Plant J 16:681–687

    Article  CAS  PubMed  Google Scholar 

  • Kou HP, Li Y, Song XX, Ou XF, Xing SC, Ma J, von Wettstein D, Liu B (2011) Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to stress in rice (Oryza sativa L.). J Plant Physiol 168:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Langebartels C, Heller W, Führer G, Lippert M, Simons S, Sandermann H (1998) Memory effects in the action of ozone on conifers. Ecotoxicol Environ Saf 41:62–72

    Article  CAS  PubMed  Google Scholar 

  • Lesburguères E, Gobbo OL, Alaux-Cantin S, Hambucken A, Trifilieff P, Bontempi B (2011) Early tagging of cortical networks is required for the formation of enduring associative memory. Science 331:924–928

    Article  PubMed  CAS  Google Scholar 

  • Li S, Liu J, Liu Z, Li X, Wu F, He Y (2014) HEAT-INDUCED TAS1 TARGETG1 mediates thermotolerance via HEAT STRESS TRANSCRIPTION FACTOR A1-directed pathways in Arabidopsis. Plant Cell 26:1764–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo WS, Duggan L, Emre NCT, Belotserkovskya R, Lane WS, Shiekhattar R, Berger SL (2001) Snf1—a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293:1142–1146

    Article  CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. W. H. Freeman, New York, NY, Section 21-7: Learning and memory

    Google Scholar 

  • Loreto F, Dicke M, Schnitzler J-P, Turlings TCJ (2014) Plant volatiles and the environment. Plant Cell Environ 37:1905–1908

    Article  PubMed  Google Scholar 

  • Love J, Dodd AN, Webb AAR (2004) Circadian and diurnal calcium oscillations encode photoperiodic information in Arabidopsis. Plant Cell 16:956–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luedemann G, Matyssek R, Fleischmann F, Grams TEE (2005) Acclimation to ozone affects host/pathogen interaction and competitiveness for nitrogen in juvenile Fagus sylvatica and Picea abies trees infected with Phytophthora citricola. Plant Biol 7:640–649

    Article  CAS  PubMed  Google Scholar 

  • Luedemann G, Matyssek R, Winkler JB, Grams TEE (2009) Contrasting ozone × pathogen interaction as mediated through competition between juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies). Plant Soil 323:47–60

    Article  CAS  Google Scholar 

  • Lüttge U (2003) Circadian rhythmicity: is the “biological clock” hardware or software. Progr Bot 64:277–319

    Article  Google Scholar 

  • Lüttge U (2008) Physiological ecology of tropical plants, 2nd edn. Springer, Berlin, 458p

    Google Scholar 

  • Lüttge U, Hertel B (2009) Diurnal and annual rhythms in trees. Trees 23:683–700

    Article  Google Scholar 

  • Lüttge U, Kluge M, Thiel G (2010) Botanik. Die umfassende Biologie der Pflanzen. Wiley-VCH, Weinheim, 1215p

    Google Scholar 

  • Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. Prog Bot 64:349–404

    Article  CAS  Google Scholar 

  • Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Koricheva J, Schnyder H, Ernst D, Munch JC, Osswald W, Pretzsch H (2012) The balance between resource sequestration and retention: a challenge in plant science. In: Matyssek R, Schnyder H, Osswald W, Ernst D, Munch JC, Pretzsch H (eds) Growth and defence in plants—resource allocation at multiple scales, Ecological studies 220. Springer, Heidelberg, pp 3–24

    Chapter  Google Scholar 

  • Matzke M, Matzke AJ, Pruss GJ, Vance VB (2001) RNA-based silencing strategies in plants. Curr Opin Genet Dev 11:221–227

    Article  CAS  PubMed  Google Scholar 

  • Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2007) Targets of RNA directed DNA methylation. Curr Opin Plant Biol 10:512–519

    Article  CAS  PubMed  Google Scholar 

  • McAinsh MR, Hetherington AM (1998) Encoding specificity in Ca2+ signalling systems. Trends Plant Sci 3:32–36

    Article  Google Scholar 

  • McClung CR (2006) Plant circadian rhythms. Plant Cell 18:792–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McWatters HG, Bastow RM, Hall A, Millar AJ (2000) The ELF3 zeitnehmer regulates light signaling to the circadian clock. Nature 408:716–720

    Article  CAS  PubMed  Google Scholar 

  • Michael TP, McClung CR (2002) Phase-specific circadian clock regulatory elements in Arabidopsis. Plant Physiol 130:627–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millar AJ (1999) Biological clocks in Arabidopsis thaliana. New Phytol 141:175–197

    Article  CAS  Google Scholar 

  • Millar AJ, Kay SA (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA 93:15491–15496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049

    Article  CAS  PubMed  Google Scholar 

  • Müller LM, von Korff M, Davis SJ (2014) Connections between circadian clocks and carbon metabolism reveal species-specific effects on growth control. J Exp Bot 65:2915–2923

    Article  PubMed  Google Scholar 

  • Nakamichi N (2011) Molecular mechanisms underlying the Arabidopsis circadian clock. Plant Cell Physiol 52:1709–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niwa Y, Yamashino T, Mizuno T (2009) The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Plant Cell Physiol 50:838–854

    Article  CAS  PubMed  Google Scholar 

  • Ogudi T, Sage-Ono K, Kamada H, Ono M (2004) Characterization of transcriptional oscillation of an Arabidopsis homolog of PnC401 related to photoperiodic induction of flowering in Pharbitis nil. Plant Cell Physiol 45:232–235

    Article  Google Scholar 

  • Olbrich M, Knappe C, Wenig M, Gerstner E, Häberle K-H, Kitao M, Matyssek R, Stich S, Leuchner M, Werner H, Schlink K, Müller-Starck G, Welzl G, Scherb H, Ernst D, Heller W, Bahnweg G (2010) Ozone Fumigation (twice ambient) reduces leaf infestation following natural and artificial inoculation by the endophytic fungus Apiognomonia errabunda of adult European beech trees. Environ Pollut 158:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Onai K, Okamoto K, Nishimoto H, Morioka C, Hirano M, Kami-Ike N, Ishiura M (2004) Large-scale screening of Arabidopsis circadian clock mutants by a high-throughput real-time bioluminescence monitoring system. Plant J 40:1–11

    Article  CAS  PubMed  Google Scholar 

  • Osmond CB, Grace SC (1995) Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? J Exp Bot 46:1351–1362

    Article  CAS  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Nat Acad Sc USA 95:8660–8664

    Article  CAS  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56

    Article  CAS  Google Scholar 

  • Pearcy RW, Osteryoung K, Calkin HW (1985) Photosynthetic responses to dynamic light environments by Hawaiian trees. Plant Physiol 79:896–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierik R, Ballaré CL, Dicke M (2014) Ecology of plant volatiles: taking a plant community perspective. Plant Cell Environ 37:1845–1853

    Article  PubMed  Google Scholar 

  • Plieth C, Hansen UP, Knight H, Knight MR (1999) Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 18:491–497

    Article  CAS  PubMed  Google Scholar 

  • Portis AR (2003) Rubisco activase—Rubisco’s catalytic chaperone. Photosyn Res 75:11–27

    Article  CAS  PubMed  Google Scholar 

  • Rasmann S, de Vos M, Casteel CL, Tian D, Halitschke R, Sun JY, Agrawal AA, Felton GW, Jander G (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 76:395–401

    Article  CAS  Google Scholar 

  • Rikin A (1991) Temperature-induced phase shifting of circadian rhythms in cotton seedlings as related to variations in chilling resistance. Planta 185:407–414

    Article  CAS  PubMed  Google Scholar 

  • Ripoll C, Le Sceller L, Verdus M-C, Norris V, Tafforeau M, Thellier M (2009) Memorization of abiotic stimuli in plants: a complex role for calcium. In: Baluska F (ed) Plant-environment interactions. Springer, Berlin, pp 267–283

    Chapter  Google Scholar 

  • Roden LC, Song H-R, Jackson S, Morris K, Carré IA (2002) Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis. Proc Natl Acad Sci USA 99:13313–13318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux D, Vian A, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G (2006) Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. Physiol Plant 128:283–288

    Article  CAS  Google Scholar 

  • Salomé PA, Michael TP, Kearns EV, Fett-Neto AG, Sharrock RA, McClung CR (2002) The out of phase 1 mutant defines a role for PHYB in circadian phase control in Arabidopsis. Plant Physiol 129:1674–1685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasek TW, Richardson CJ, Fendick EA, Bevington SR, Kress LW (1991) Carryover effects of acid rain and ozone on the physiology of multiple flushes of loblolly pine seedlings. For Sci 37:1078–1098

    Google Scholar 

  • Sassenrath-Cole GF, Pearcy RW (1992) The role of ribulose-bisphosphate regeneration in the induction requirement of photosynthetic CO2 exchange under transient light conditions. Plant Physiol 99:227–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saze H (2008) Epigenetic memory transmission through mitosis and meiosis in plants. Semin Cell Dev Biol 19:527–536

    Article  PubMed  Google Scholar 

  • Shen J, Xie K, Xiong L (2010) Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Mol Gen Genet 284:477–488

    Article  CAS  Google Scholar 

  • Sinclair J, Hanks P, Fox G, Moon R, Stock P (1987) Collins Cobuild English dictionary. Collins, London, 1703p

    Google Scholar 

  • Sridhar VV, Kapoor A, Zhang K, Zhu J, Zhou T, Hasegawa PM, Bressan RA, Zhu JK (2007) Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 447:735–738

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tafforeau M, Verdus M-C, Norris V, White G, Demarty M, Thellier M, Ripoll C (2002) SIMS study of the calcium-deprivation step related to epidermal meristem production induced in flax by cold shock or radiation from a GSM telephone. J Trace Microprobe Techn 20:611–623

    Article  CAS  Google Scholar 

  • Tafforeau M, Verdus MC, Norris V, White GJ, Cole M, Demarty M, Thellier M, Ripoll C (2004) Plant sensitivity to low intensity 105 GHz electromagnetic radiation. Bioelectromagnetics 25:403–407

    Article  PubMed  Google Scholar 

  • Tafforeau M, Verdus M-C, Norris V, Ripoll C, Thellier M (2006) Memory processes in the response of plants to environmental signals. Plant Signal Behav 1:9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M (1984) ADP-ribosyltransferase from hen liver nuclei. Purification and characterization. J Biol Chem 259:2022–2029

    CAS  PubMed  Google Scholar 

  • Tanner W (1969) Light-driven active uptake of 3-O-methylglucose via an inducible hexose uptake system of Chlorella. Biochem Biophys Res Comm 36:278–283

    Article  CAS  PubMed  Google Scholar 

  • Tanner W, Grünes R, Kandler O (1970) Spezifität und Turnover des induzierbaren Hexose-Aufnahmesystems von Chlorella. Z Pflanzenphysiol 62:376–386

    CAS  Google Scholar 

  • Thellier M (2015) Les plantes ont-elles de la mémoire? Editions Quae, Versailles, 111p

    Google Scholar 

  • Thellier M, Lüttge U (2013) Plant memory: a tentative model. Plant Biol 15:1–12

    Article  CAS  PubMed  Google Scholar 

  • Thellier M, Desbiez MO, Champagnat P, Kergosien Y (1982) Do memory processes also occur in plants? Physiol Plant 56:281–284

    Article  Google Scholar 

  • Thellier M, Le Sceller L, Norris V, Verdus M-C, Ripoll C (2000) Long-distance transport, storage and recall of morphogenetic information in plants: the existence of a primitive plant “memory”. CR Acad Sci Paris (Sciences de la Vie/Life Science) 323:81–91

    CAS  Google Scholar 

  • Thellier M, Ripoll C, Norris V (2013) Memory processes in the control of plant growth and metabolism. Nova Acta Leopoldina NF 114(391):21–42

    CAS  Google Scholar 

  • Trewavas A (1999) Le calcium c’est la vie: calcium waves. Plant Physiol 120:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trewavas A (2003) Aspects of plant intelligence. Ann Bot 92:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyystjärvi E, Aro E-M (1996) The rate constant of photoinhibition measured in lincomycin-treated leaves is directly proportional to light intensity. Proc Natl Acad Sci USA 93:2213–2218

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueda M, Nakamura Y (2006) Metabolites involved in plant movement and “memory”: nyctinasty of legumes and trap movement in the Venus flytrap. Nat Prod Rep 23:548–557

    Article  CAS  PubMed  Google Scholar 

  • Valladares F, Allen MT, Pearcy RW (1997) Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs along a light gradient. Oecologia 111:505–514

    Article  Google Scholar 

  • van Hulten M, Ton J, Pieterse CMJ, van Wees SCM (2010) Plant defense signaling from the underground primes aboveground defenses to confer enhanced resistance in a cost-efficient manner. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 43–60

    Chapter  Google Scholar 

  • Verdus M-C, Thellier M, Ripoll C (1997) Storage of environmental signals in flax: their morphogenetic effect as enabled by a transient depletion of calcium. Plant J 12:1399–1410

    Article  CAS  Google Scholar 

  • Verdus M-C, Le Sceller L, Norris V, Thellier M, Ripoll C (2007) Pharmacological evidence for calcium involvement in the long-term processing of abiotic stimuli in plants. Plant Signal Behav 2:212–220

    Article  PubMed  PubMed Central  Google Scholar 

  • Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    Article  CAS  PubMed  Google Scholar 

  • Vian A, Roux D, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G (2006) Microwave irradiation affects gene expression in plants. Plant Signal Behav 1:67–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voelckel C, Baldwin IT (2004) Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivore-specific transcriptional imprints and a distinct imprint from stress combinations. Plant J 38:650–663

    Article  CAS  PubMed  Google Scholar 

  • Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK (2010) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wenden B, Kozma-Bognár L, Edwards KD, Hall AJW, Locke JCW, Millar AJ (2011) Light inputs shape the Arabidopsis circadian system. Plant J 66:480–491

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm C, Wirth C (2015) Physiodiversity—New tools allow physiologist to embrace biodiversity and reconstruct the evolution of ‘physiologies’? J Plant Physiol 172:1–3

    Article  CAS  PubMed  Google Scholar 

  • Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14:1481–1486

    Article  CAS  PubMed  Google Scholar 

  • Yaish MW, Colasanti J, Rothstein SJ (2011) The role of epigenetic processes in controlling flowering time in plants exposed to stress. J Exp Bot 62:3727–3735

    Article  CAS  PubMed  Google Scholar 

  • Yerushalmi S, Green RM (2009) Evidence for the adaptive significance of circadian rhythms. Ecol Lett 12:970–981

    Article  PubMed  Google Scholar 

  • Yerushalmi S, Yakir E, Green RM (2011) Circadian clocks and adaptation in Arabidopsis. Mol Ecol 20:1155–1165

    Article  PubMed  Google Scholar 

  • Zhang X (2008) The epigenetic landscape of plants. Science 320:489–492

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • zu Castell W, Fleischmann F, Heger T, Matyssek R (2016) Shaping theoretic foundations of holobiont-like systems. In: Cánovas FM, Lüttge U, Matyssek R (eds) Progress in botany, vol 77. Springer, Heidelberg

    Google Scholar 

Download references

Acknowledgement

We thank Professor Dr. Rainer Matyssek for carefully reading the manuscript and very many useful suggestions and stimulating comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Lüttge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lüttge, U., Thellier, M. (2016). Roles of Memory and Circadian Clock in the Ecophysiological Performance of Plants. In: Lüttge, U., Cánovas, F., Matyssek, R. (eds) Progress in Botany 77. Progress in Botany, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-319-25688-7_2

Download citation

Publish with us

Policies and ethics