Skip to main content

Targeted Cancer Stem Cell Therapy

  • Chapter
  • First Online:
Bioengineering and Cancer Stem Cell Concept
  • 712 Accesses

Abstract

The concept of cancer stem cells has been a compelling but controversial idea for many years. It suggests that at the root of any cancer there is a small subset of cancer cells that are solely responsible for driving the growth and evolution of a patient’s cancer. These cancer stem cells replenish themselves and produce the other types of cancer cells, as normal stem cells produce other normal tissues. The concept is important, because it suggests that only by developing treatments that get rid of the cancer stem cells will you be able to eradicate the cancer. Likewise, if you could selectively eliminate these cancer stem cells, the other remaining cancer cells would not be able to sustain the cancer. This chapter will summarize the novelties in cancer treatment that would be able to target specifically cancer stem cells.

There is always a REASON, a ‘why’, for someone getting cancer. How in the world can anyone truly get better without discovering exactly what that IS.

Dr. Conners

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santini JT Jr, Cima MJ, Langer R (1999) A controlled-release microchip. Nature 397:335–338

    Article  Google Scholar 

  2. Yang T, Rycaj K (2015) Targeted therapy against cancer stem cells (review). Oncol Lett 10:27–33

    Google Scholar 

  3. Timko BP, Arruebo M, Shankarappa SA, McAlvin JB, Okonkwo OS, Mizrahi B, Stefanescu CF, Gomez L, Zhu J, Zhu A, Santamaria J, Langer R, Kohane DS (2014) Near infrared-actuated devices for remotely controlled drug delivery. Proc Natl Acad Sci U S A 111(4):1349–1354

    Article  Google Scholar 

  4. Guduru R, Liang P, Runowicz C, Nair M, Atluri V, Khizroev S (2013) Magneto-electric nanoparticles (MENs) to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Sci Rep 3:2953

    Article  Google Scholar 

  5. De Jong WH, De Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149

    Article  Google Scholar 

  6. Andrew Koehl http://www.owlstonenanotech.com/company/management

  7. Rao W, Wang H, Han J, Zhao S, Dumbleton J, Agarwal P, Zhang W, Zhao G, Yu J, Zynger DL, Lu X, He X (2015) Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano 9(6):5725. doi:10.1021/nn506928p

    Article  Google Scholar 

  8. Cirillo G, Iemma F, Puoci F, Parisi OI, Curcio M, Spizzirri UG, Picci N (2009) Imprinted hydrophilic nanospheres as drug delivery systems for 5-fluorouracil sustained release. J Drug Target 17(1):72–77

    Article  Google Scholar 

  9. Cirillo G, Hampel S, Spizzirri GU, Paris O, Picci N, Iemma F (2014) Carbon nanotubes hybrid hydrogels in drug delivery: a perspective review. Biomed Res Int 2014:825017

    Article  Google Scholar 

  10. Daum N, Tscheka C, Neumeyer A, Schneider M (2012) Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(1):52–65

    Article  Google Scholar 

  11. Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11):1649–1659

    Article  Google Scholar 

  12. Davis ME (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782

    Article  Google Scholar 

  13. Farokhzad OC et al (2004) Nanoparticle-aptamer bioconjugates a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–7672

    Article  Google Scholar 

  14. Hapira A, Livney YD, Broxterman HJ, Assaraf YG (2011) Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat 14:150–163

    Article  Google Scholar 

  15. Gil J, Stembalska A, Pesz KA, Sasiadek MM (2008) Cancer stem cells: the theory and perspectives in cancer therapy. J Appl Genet 49(2):193–199

    Article  Google Scholar 

  16. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803

    Article  Google Scholar 

  17. Hapira A, Livney YD, Broxterman HJ, Assaraf YG (2011) Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat 14:150–163

    Article  Google Scholar 

  18. Ahmed N, Fessi H, Elaissari A (2012) Theranostic applications of nanoparticles in cancer. Drug Discov Today 17(17–18):928–934

    Article  Google Scholar 

  19. Vinogradov S, Wei X (2012) Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond) 7:597–615

    Article  Google Scholar 

  20. Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG (2011) A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther 11:464–473

    Article  Google Scholar 

  21. Zhou BBS, Zhang H, Damelin M, Geles KG, Grindley JC et al (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8:806–823

    Article  Google Scholar 

  22. McDermott SP, Wicha MS (2010) Targeting breast cancer stem cells. Mol Oncol 4:404–419

    Article  Google Scholar 

  23. Wu X, Chen H, Wang X (2012) Can lung cancer stem cells be targeted for therapies? Cancer Treat Rev 38:580–588

    Article  Google Scholar 

  24. Mamaeva V, Rosenholm JM, Bate-Eya LT, Bergman L, Peuhu E et al (2011) Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. Mol Ther 19:1538–1546

    Article  Google Scholar 

  25. Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC et al (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13:153–166

    Article  Google Scholar 

  26. Liu C, Zhao G, Liu J, Ma N, Chivukula P et al (2009) Novel biodegradable lipid nano complex for siRNA delivery significantly improving the chemosensitivity of human colon cancer stem cells to paclitaxel. J Control Release 140:277–283

    Article  Google Scholar 

  27. Bader AG, Brown D, Stoudemire J, Lammers P (2011) Developing therapeutic microRNAs for cancer. Gene Ther 18:1121–1126

    Article  Google Scholar 

  28. Piao L, Zhang M, Datta J, Xie X, Su T et al (2012) Lipid-based nanoparticle delivery of pre-miR-107 inhibits the tumorigenicity of head and neck squamous cell carcinoma. Mol Ther 20:1261–1269

    Article  Google Scholar 

  29. Yin D, Ogawa S, Kawamata N, Leiter A, Ham M et al (2013) miR-34a Functions as a tumor suppressor modulating EGFR in glioblastoma multiforme. Oncogene 32(9):1155–1163

    Article  Google Scholar 

  30. Ugras S, Brill E, Jacobsen A, Hafner M, Socci ND et al (2011) Small RNA sequencing and functional characterization reveals MicroRNA-143 tumor suppressor activity in liposarcoma. Cancer Res 71:5659–5669

    Article  Google Scholar 

  31. Pramanik D, Campbell NR, Karikari C, Chivukula R, Kent OA et al (2011) Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol Cancer Ther 10:1470–1480

    Article  Google Scholar 

  32. Issels RD (2008) Hyperthermia adds to chemotherapy. Eur J Cancer 44:2546–2554

    Article  Google Scholar 

  33. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554

    Article  Google Scholar 

  34. Yang K, Zhang S, Zhang G, Sun X, Lee ST et al (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323

    Article  Google Scholar 

  35. Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102:11600–11605

    Article  Google Scholar 

  36. Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N et al (2009) Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci U S A 106:12897–12902

    Article  Google Scholar 

  37. Ding X, Singh R, Burke A, Hatcher H, Olson J et al (2011) Development of iron-containing multiwalled carbon nanotubes for MR-guided laser-induced thermotherapy. Nanomedicine (Lond) 6:1341–1352

    Article  Google Scholar 

  38. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  Google Scholar 

  39. Burke AR, Singh RN, Carroll DL, Wood JC, D’Agostino RB et al (2012) The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials 33:2961–2970

    Article  Google Scholar 

  40. Atkinson RL, Zhang M, Diagaradjane P, Peddibhotla S, Contreras A et al (2010) Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci Transl Med 2:55–79

    Article  Google Scholar 

  41. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  Google Scholar 

  42. Galanzha EI, Kim JW, Zharov VP (2009) Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in vivo detection and killing of circulating cancer stem cells. J Biophotonics 2:725–735

    Article  Google Scholar 

  43. Galanzha EI, Shashkov EV, Kelly T, Kim JW, Yang L et al (2009) In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol 4:855–860

    Article  Google Scholar 

  44. Kim JW, Galanzha EI, Shashkov EV, Moon HM, Zharov VP (2009) Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 4:688–694

    Article  Google Scholar 

  45. Hillner BE, Smith TJ (1991) Efficacy and cost effectiveness of adjuvant chemotherapy in women with node-negative breast cancer: a decision-analysis model. N Engl J Med 324(3):160–168

    Article  Google Scholar 

  46. Ning N, Pan Q, Zheng F, Teitz-Tennenbaum S, Egenti M, Yet J, Li M, Ginestier C, Wicha MS, Moyer JS, Prince MEP, Xu Y, Zhang X-L, Huang S, Chang AE, Li Q (2012) Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res 72(7):1853. doi:10.1158/0008-5472.CAN-11-1400

    Article  Google Scholar 

  47. Xia X, Mai J, Wang R, Shen H (2015) Porous silicon microparticle potentiates anti-tumor immunity by enhancing cross-presentation and inducing type I interferon response. Cell Rep 11:957–966

    Article  Google Scholar 

  48. Biter B, Aird KAM, Garipov A, Li H, Amatangelo M, Zhang R et al (2015) Targeting EZH2 methyltransferase activity in ARID1A mutated cancer cells is synthetic lethal. Nat Med 21(3):231–238

    Google Scholar 

  49. Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, Kirson ED, Taillibert S, Liebermann F, DbalĂ½ V, Ram Z, Villano JL, Rainov N, Weinberg U, Schiff D, Kunschner L, Raizer J, Honnorat J, Sloan A, Malkin M, Landolfi JC, Payer F, Mehdorn M, Weil RJ, Pannullo SC, Westphal M, Smrcka M, Chin L, Kostron H, Hofer S, Bruce J, Cosgrove R, Paleologous N, Palti Y, Gutin PH (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48(14):2192–2202

    Article  Google Scholar 

  50. Stuckey DW et al (2015) Engineering toxin-resistant therapeutic stem cells to treat brain tumors. Stem Cells 33(2):589–600. doi:10.1002/stem.1874

    Article  Google Scholar 

  51. al-Sarraf M, Martz K, Herskovic A, Leichman L, Brindle JS, Vaitkevicius VK, Cooper J, Byhardt R, Davis L, Emami B (1997) Progress report of combined chemoradiotherapy versus radiotherapy alone in patients with esophageal cancer: an intergroup study. J Clin Oncol 15(1):277–284

    Article  Google Scholar 

  52. Citron ML, Berry DA, Cirrincione C, Hudis C, Winer EP, Gradishar WJ, Davidson NE, Martino S, Livingston R, Ingle JN, Perez EA, Carpenter J, Hurd D, Holland JF, Smith BL, Sartor CI, Leung EH, Abrams J, Schilsky R, Muss HB, Norton L (2003) Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol 21(8):1431–1439

    Article  Google Scholar 

  53. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–10951

    Article  Google Scholar 

  54. Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment. Cancer 104(6):1129–1137

    Article  Google Scholar 

  55. Fisher B, Wolmark N, Rockette H, Redmond C, Deutsch M, Wickerham DL, Fisher ER, Caplan R, Jones J, Lerner H et al (1988) Postoperative adjuvant chemotherapy or radiation therapy for rectal cancer: results from NSABP Protocol R-011. J Nat Cancer I 80(1):21–29

    Article  Google Scholar 

  56. Gagliardi G, Lax I, Ottolenghi A, Rutqvist LE (1996) Long-term cardiac mortality after radiotherapy of breast cancer—application of the relative seriality model. Br J Radiol 69(825):839–846

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Pavlovic, M., Balint, B. (2015). Targeted Cancer Stem Cell Therapy. In: Bioengineering and Cancer Stem Cell Concept. Springer, Cham. https://doi.org/10.1007/978-3-319-25670-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25670-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25668-9

  • Online ISBN: 978-3-319-25670-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics